Study of nanocomposite thin-film sensor materials
https://doi.org/10.26896/1028-6861-2025-91-11-41-48
Abstract
Currently, there is a growing need for environmental monitoring and industrial safety, and, accordingly, for cost-effective, selective and stable sensor systems capable of promptly detecting even low concentrations of toxic components. The paper presents the results of a study of thin-film sensor materials based on biopolymer matrices of polysaccharides modified with AgI nanoparticles. The materials are intended for highly sensitive determination of ammonia in the air. The relationship between the structural and morphological characteristics of composite films containing AgI nanoparticles and their functional sensory properties with respect to ammonia vapors was analyzed. Particular attention was paid to studying the mechanisms of sensory response and the effect of surface morphology on the sensitivity of the material. Atomic force microscopy and electrophysical measurements have shown that the introduction of AgI nanoparticles significantly modifies the film surface, forming a developed relief with nanoparticle agglomerates (50 – 200 nm in size), a porous structure and an increased specific surface area (roughness increases by 3 – 5 times). Such morphological changes have been shown to significantly increase the sensitivity of the material to ammonia due to an increase in the area of active adsorption centers. Ammonia is detected due to a reversible complexation reaction between Ag+ ions and NH3 molecules, which changes the conductivity of the composite. High dynamic characteristics of the sensor have been established (the response time does not exceed 8 sec at an NH3 concentration of 50 ppm, and the recovery time is about 30 sec). In addition, the developed materials are selective for ammonia in the presence of potential interferents (CO2, H2O, volatile organic compounds). The results obtained can be used to create a new generation of gas sensors.
About the Authors
R. B. SalikhovРоссия
Renat B. Salikhov
32, ul. Zaki Validi, Ufa, 450076
M. V. Bazunova
Россия
Marina V. Bazunova
32, ul. Zaki Validi, Ufa, 450076
T. R. Salikhov
Россия
Timur R. Salikhov
32, ul. Zaki Validi, Ufa, 450076
I. N. Mullagaliev
Россия
Ilnur N. Mullagaliev
32, ul. Zaki Validi, Ufa, 450076
I. N. Safargalin
Россия
Idris N. Safargalin
32, ul. Zaki Validi, Ufa, 450076
A. D. Ostaltsova
Россия
Anastasia D. Ostaltsova
32, ul. Zaki Validi, Ufa, 450076
References
1. Galkina E. M., Smirnova T. A., Krivosheeva E. M., et al. Dynamics of some biophysical parameters of the skin under the influence of chitosan-containing hydrogel / Saratov Sci. Med. J. 2017. Vol. 13. No. 3. P. 616 – 620 [in Russian].
2. Ibadullaeva S. Zh., Dzhamalova U. M., Rasulova S. S., et al. Amperometric multienzyme biosensors: development and application (brief review) / Biophysics. 2019. Vol. 64. No. 5. P. 869 – 882 [in Russian]. DOI: 10.1134/s0006302919050065
3. Kurlyandskaya G. V., Fernández E., Safronov A. P., et al. Magnetic nanoparticles obtained by electrophysical technique: focus on biomedical applications / Phys. Solid State. 2021. Vol. 63. No. 10. P. 1447 – 1461. DOI: 10.1134/s1063783421090237
4. Shamratova V. G., Sharafutdinova V. A., Khismatullina Z. R., et al. Comparative assessment of the influence of ultradispersed systems based on complexes of chitosan and its derivatives with colloidal particles of silver iodide on the structural and functional properties of erythrocytes / Biomeditsina. 2015. No. 3. P. 69 – 77 [in Russian].
5. Akitoye A., Tochi N., Akinbulu I., et al. Chitosan nanocomposites-based electrochemical sensors: a review / Sensors. 2024. Vol. 24. No. 1. P. 14. DOI: 10.3390/sensors2401014
6. Shchemelev I. S., Zinoviev N. A., Ivanov A. V., et al. Sensor granular material based on impregnated composite «cross-linked polyvinyl alcohol – magnetite» for determination of carbohydrates by optical micrometry / Industr. Lab. Mater. Diagn. 2024. Vol. 90. No. 6. P. 5 – 14 [in Russian]. DOI: 10.26896/1028-6861-2024-90-6-5-14
7. Vyborny A. Yu., Shuvalova O. A., Zyablov A. N., Kao N. L. Application of piezoelectric sensors for determining aspartame in liquid media / Industr. Lab. Mater. Diagn. 2024. Vol. 90. No. 7. P. 27 – 31 [in Russian]. DOI: 10.26896/1028-6861-2024-90-7-27-31
8. Han E., Pan Y., Li L., et al. Development of sensitive electrochemical sensor based on chitosan/MWCNTs-AuPtPd nanocomposites for detection of bisphenol A / Chemosensors. 2023. Vol. 11. No. 6. P. 331. DOI: 10.3390/chemosensors11060331
9. Prikhozhdenko E., Lengert E., Parakhonskiy B., et al. Biocompatible chitosan nanofibers functionalized with silver nanoparticles for SERS based detection / Acta Phys. Pol. A. 2016. Vol. 129. No. 2. P. 247 – 249. DOI: 10.12693/aphyspola.129.247
10. Gong L., Dai H., Zhang S., Lin Y. Silver iodide-chitosan nanotag induced biocatalytic precipitation for self-enhanced ultrasensitive photocathodic immunosensor / Anal. Chem. 2016. Vol. 88. No. 11. P. 5775 – 5782. DOI: 10.1021/acs.analchem.6b00153
11. Sanap P., Hegde V., Ghunawat D., et al. Chitosan nanoparticle applications in dentistry: a sustainable biopolymer / Front. Chem. 2024. Vol. 12. P. 1362482. DOI: 10.22271/oral.2020.v6.i4b.1050
12. Ipatova V. S., Bliznyuk U. A., Borshchegovskaya P. Yu., et al. Monitoring the concentration of volatile organic compounds in beef meat after radiation treatment with accelerated electrons / Industr. Lab. Mater. Diagn. 2024. Vol. 90. No. 3. P. 12 – 23 [in Russian]. DOI: 10.26896/1028-6861-2024-90-3-12-23
13. Nandan K., Singh A. Health and safety measures associated with ammonium hydroxide exposure / Hazardous Chemicals. 2025. Vol. 34. P. 495 – 504. DOI: 10.1016/b978-0-12-824533-0.00025-6
14. Salikhov R. B., Zilberg R. A., Bulysheva E. O., et al. Nanocomposite thin-film structures based on a polyelectrolyte complex of chitosan and chitosan succinamide with SWCNT / Lett. Mater. 2023. Vol. 13. No. 2. P. 132 – 137. DOI: 10.22226/2410-3535-2023-2-132-137
15. Salikhov R. B., Mullagaliev I. N., Badretdinov B. R., et al. Effect of the morphology of films of polyaniline derivatives poly-2-[(2E)-1-methyl-2-butene-1-yl] aniline and poly-2-(cyclohex-2-en-1-yl) aniline on sensory sensitivity to humidity and ammonia vapors / Lett. Mater. 2022. Vol. 12. No. 4. P. 309 – 315. DOI: 10.22226/2410-3535-2022-4-309-315
16. Salikhov R. B., Ostaltsova A. D., Salikhov T. R., et al. Thin films of polyanilines and polymer nanocomposites for the development of chemical sensors / Euras. J. Phys. Funct. Mater. 2024. Vol. 8. No. 2. P. 58 – 70. DOI: 10.32523/ejpfm.2024080206
17. Yumalin T., Salikhov T., Mahato B., et al. CNT thin films based on epoxy mixtures: fabrication, electrical characteristics / Chim. Techno Acta. 2024. Vol. 11. No. 2. DOI: 10.15826/chimtech.2024.11.2.05
18. Latypova L. R., Andriianova A. N., Usmanova G. S., et al. Preparation and properties of β-CD/P(AM-co-AA) composite hydrogel by frontal polymerization of ternary deep eutectic solvent / Polymer Int. 2023. Vol. 72. No. 7. P. 664 – 670. DOI: 10.1002/pi.6523
19. Salikhov R. B., Mullagaliev I. N., Ostaltsova A. D., Vazhdaev K. V. Creation and study of composite and nanocomposite thin-film structures based on SCTS with various carbon-containing fillers for environmental monitoring / Izv. TGU. 2024. No. 4. P. 12 – 24 [in Russian].
20. Salikhov R. B., Ostaltsova A. D., Salikhov T. R., Mullagaliev I. N. Nanocomposite polymer thin films for sensors / Vestn. Bashkir. Univ. 2024. Vol. 29. No. 2. P. 75 – 79 [in Russian].
21. Ota R., Nagayama K. Atomic force microscopy estimation of mechanical properties of tunneling nanotubes in cancer cells / Adv. Biomed. Eng. 2025. Vol. 14. P. 70 – 78. DOI: 10.14326/abe.14.70
22. Ankudinov A. B., Alymov M. I., Zelensky V. A., et al. Determination of porosity characteristics by pycnometric methods / Industr. Lab. Mater. Diagn. 2024. Vol. 90. No. 2. P. 47 – 52 [in Russian]. DOI: 10.26896/1028-6861-2024-90-2-47-52
23. Vinokurov E. G., Gaynetdinov Ch. R., Grafushin R. V., et al. Study of key factors for minimizing the roughness of chemical coatings with Ni – P and Ni – Cu – P alloys / Industr. Lab. Mater. Diagn. 2024. Vol. 90. No. 2. P. 29 – 38 [in Russian]. DOI: 10.26896/1028-6861-2024-90-2-29-38
24. Fukuda S., Ando T. Astrocytes: new evidence, new models, new roles / Biophys. Rev. 2023. Vol. 15. No. 5. P. 1303 – 1333. DOI: 10.1007/s12551-023-01145-7
25. Luo K., Peng H., Zhang B., et al. Advances in carbon nanotube-based gas sensors: exploring the path to the future / Coord. Chem. Rev. 2024. Vol. 518. P. 216049. DOI: 10.1016/j.ccr.2024.216049
26. Tanaka K., Cheng G., Nakamura T., et al. NH3 gas sensors based on single-walled carbon nanotubes interlocked with metal-tethered tetragonal nanobrackets / ACS Appl. Nano Mater. 2024. Vol. 7. No. 11. P. 13417 – 13425. DOI: 10.1021/acsanm.4c01234
27. Blackburn T. J., Tyler S. M., Pemberton J. E. Optical spectroscopy of surfaces, interfaces, and thin films / Anal. Chem. 2022. Vol. 94. No. 2. P. 515 – 558. DOI: 10.1021/acs.analchem.1c05323
28. Watts K. E., Blackburn T. J., Pemberton J. E. Optical spectroscopy of surfaces, interfaces, and thin films: a status report / Anal. Chem. 2019. Vol. 91. No. 7. P. 4235 – 4265. DOI: 10.1021/acs.analchem.9b00735
29. Kumar A., Wang Y., Zhang X., et al. Correlating surface growth of nanoporous gold with electrodeposition parameters to optimize amperometric sensing of nitrite / Sensors Actuators B: Chem. 2018. Vol. 263. P. 237 – 247. DOI: 10.1016/j.snb.2018.02.125
30. Song G., Wang Y., Tan D. A review of surface roughness impact on dielectric film properties / Mater. Today Comm. 2022. Vol. 33. P. 104876. DOI: 10.1016/j.mtcomm.2022.104876
Review
For citations:
Salikhov R.B., Bazunova M.V., Salikhov T.R., Mullagaliev I.N., Safargalin I.N., Ostaltsova A.D. Study of nanocomposite thin-film sensor materials. Industrial laboratory. Diagnostics of materials. 2025;91(11):41-48. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-11-41-48
JATS XML






























