Preview

Заводская лаборатория. Диагностика материалов

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Комплексный экспериментальный анализ процессов деформирования и трещинообразования в железобетонном элементе

https://doi.org/10.26896/1028-6861-2025-91-11-64-76

Аннотация

В связи с усложнением строительных конструкций, повышением уровня и вариативности их нагружений задача определения точных значений деформаций в них является актуальной. В материалах конструкций деформации неразрывно связаны с напряжениями, от уровня которых зависит прочность и безопасность эксплуатируемых зданий и сооружений. Процессы развития деформаций достаточно сложны и зависят от многих факторов, при этом для их регистрации при испытаниях строительных конструкций чаще используют один из известных методов, каждый из которых имеет свои преимущества и недостатки. Для получения более полной картины процессов развития деформаций и трещин в железобетонном элементе представляется перспективным совместное применение этих методов. Цель работы — повышение прочности и надежности железобетонных элементов путем комплексного анализа развития процессов деформирования и трещинообразования с использованием методов электротензометрии, корреляции цифровых изображений и регистрации тепловых выделений. Разработана методика комплексного экспериментального анализа и проведены пробные испытания железобетонного образца на растяжение с получением данных о деформациях тремя методами — с использованием тепловизора, системы Vic-3D и тензорезисторов. Представлены полученные опытные данные и проведен их комплексный сопоставительный анализ. Отмечены преимущества и недостатки предлагаемого подхода. Намечены дальнейшие пути развития предложенной методики.

Об авторах

Д. Ю. Саркисов
Томский государственный архитектурно-строительный университет
Россия

Дмитрий Юрьевич Саркисов 

634003, г. Томск, Соляная пл., д. 2



А. М. Устинов
Томский государственный архитектурно-строительный университет
Россия

Артем Михайлович Устинов 

634003, г. Томск, Соляная пл., д. 2



A. С. Пляскин
Томский государственный архитектурно-строительный университет
Россия

Андрей Сергеевич Пляскин 

634003, г. Томск, Соляная пл., д. 2



Э С. Усеинов
АО «Консалтингстройинвест»
Россия

Эмиль Сейранович Усеинов

634003, г. Томск, ул. Пушкина, д. 63г



Список литературы

1. Sarkisov D., Gorlenko N., Sarkisov Y., Shepelenko T., Gorynin G., Izmailov G. Strength and deformability of reinforced concrete elements under oblique eccentric short-term dynamic compression, tension and bending / E3S Web of Conferences. Topical Problems of Green Architecture, Civil and Environmental Engineering. TPACEE 2019. 2020. P. 14008. DOI: 10.1051/e3sconf/202016414008

2. Plevkov V. S., Malganov A. I., Baldin I. V., et al. Estimation of operated ferro-concrete structures strength of usual and prestressed reinforcing under longitudinal forces, bending and twisting moments / Proc. of the 8th Korea – Russia International Symposium on Science and Technology. KORUS 2004. Tomsk, 2004. P. 342 – 344. DOI: 10.1109/korus.2004.1555642

3. Galyautdinov Z. R. Deformation of reinforced concrete slabs on yielding supports under short-time dynamic loading / AIP Conference Proc. Youth, Science, Solutions: Ideas and Prospects. Tomsk, 2017. P. 40 – 44. DOI: 10.1063/1.4973043

4. Trekin N. N., Krylov V. V. On the issue of punching shear capacity of reinforced concrete slabs under dynamic loading at ground space infrastructure facilities / Scientific Aspect. 2018. Vol. 7. No. 4. P. 771 – 778.

5. Plevkov V. S. Dynamicgth of concrete and rebar reinforced concrete structures. — Tomsk: TSUAB, 1996. — 64 p. [in Russian].

6. Kumpyak O. G., Galyautdinov Z. R., Kokorin D. N. Strength and deformability of reinforced concrete structures on compliant supports under short-term dynamic loading. — Tomsk: TSUAB, 2016. — 272 p. [in Russian].

7. Geniev G. A. Effect of duration of load action on material strength / Beton Zhelezobeton. 1996. No. 4. P. 19 – 22 [in Russian].

8. Kumpyak O. G., Galyautdinov Z. R. Calculation of reinforced concrete slabs for short-time dynamic loads taking into account the real properties of materials / Beton Zhelezobeton. 2007. No. 6. P. 15 – 18 [in Russian].

9. Yekai Yang, Chengqing Wu, Zhongxian Liu. Rate dependent behaviour of 3D printed ultra-high performance fibre-reinforced concrete under dynamic splitting tensile / Composite Structures. 2023. Vol. 309. P. 116727. DOI: 10.1016/j.compstruct.2023.116727

10. Xiaoli Wei, Xiaodan Ren. Coupled viscosity-damage model for concrete under high strain rate / Eng. Fract. Mech. 2023. Vol. 277. P. 108985. DOI: 10.1016/j.engfracmech.2022.108985

11. Beibei Xiong, Devid Falliano, Luciana Restuccia, Fabio Di Trapani, Cristoforo Demartino, Giuseppe Carlo Marano. High-strain rate compressive behavior of concrete with two different substituted recycled plastic aggregates: Experimental characterization and probabilistic modeling / Constr. Build. Mater. 2023. Vol. 368. P. 130279. DOI: 10.1016/j.conbuildmat.2022.130279

12. Wang Z. H., Wen H. M., Zheng H., Cheng J. S. Dynamic increase factors of concrete-like materials at very high strain rates / Constr. Build. Mater. 2022. Vol. 345. P. 128270. DOI: 10.1016/j.conbuildmat.2022.128270

13. Mostafa Hassan, Kay Wille. Direct tensile behavior of steel fiber reinforced ultra-high performance concrete at high strain rates using modified split Hopkinson tension bar / Composites. Part B. Eng. 2022. Vol. 246. P. 110259. DOI: 10.1016/j.compositesb.2022.110259

14. Dade Lai, Cristoforo Demartino, Yan Xiao. High-strain rate tension behavior of Fiber-Reinforced Rubberized Concrete / Cement and Concrete Composites. 2022. Vol. 131. P. 104554. DOI: 10.1016/j.cemconcomp.2022.104554

15. Dade Lai, Cristoforo Demartino, Yan Xiao. High-strain rate compressive behavior of Fiber-Reinforced Rubberized Concrete / Constr. Build. Mater. 2022. Vol. 319. P. 125739. DOI: 10.1016/j.conbuildmat.2021.125739

16. Masoud Rezaei, Mohsen A. Issa. Specimen and aggregate size effect on the dynamic fracture parameters of concrete under high loading rates / Eng. Fract. Mech. 2022. Vol. 260. P. 108184. DOI: 10.1016/j.engfracmech.2021.108184

17. Polovyi A. O., Lisachenko N. G. Calculation of the stress-strain state of layers of cross-ply laminate based on an experimental stress-strain curves under uniaxial tension / Industr. Lab. Mater. Diagn. 2024. Vol. 90. No. 2. P. 62 – 72 [in Russian]. DOI: 10.26896/1028-6861-2024-90-2-62-72

18. Gerard G., Patrice B. Behavior of quasi-brittle material at high strain rate. Experiment and modeling / Eur. J. Mech. A. 1998. No. 17 – 3. P. 403 – 420.

19. Gadenin M. M. Computation and experimental analysis of the resistance of superalloys to low cycle deformations / Industr. Lab. Mater. Diagn. 2022. Vol. 88. No. 9. P. 61 – 68 [in Russian]. DOI: 10.26896/1028-6861-2022-88-9-61-68

20. Zhang F., Poh L. H., Zhang M. H. Resistance of cement-based materials against high-velocity small caliber deformable projectile impact / Int. J. Impact Eng. 2020. P. 103629. DOI: 10.1016/j.ijimpeng.2020.103629

21. Sarkisov D. Yu., Odnokopylov G. I., Krylov V. V., Annenkov A. O. Numerical and experimental studies of deflections of conventional and strengthened reinforced concrete bendable elements under short-term dynamic loading / INCAS Bull. 2021. Vol. 13 (Special Issue). P. 179 – 192. DOI: 10.13111/2066-8201.2021.13.s.17

22. Sarkisov D. Y., Krylov V. V., Ergeshov E. T., Goussous J. S. Analysis of changes in the survivability of building structures reinforced after an emergency dynamic impact in the context of assessing the security of buildings in the oil and gas industry / Int. J. Adv. Appl. Sci. 2021. Vol. 8. No. 12. P. 25 – 35. DOI: 10.21833/ijaas.2021.12.004

23. Makhutov N. A., Gadenin M. M. Study of the generalized curves of the static and cyclic deformation, damage and fracture / Industr. Lab. Mater. Diagn. 2023. Vol. 89. No. 5. P. 46 – 55 [in Russian]. DOI: 10.26896/1028-6861-2023-89-5-46-55

24. Sun Q., Williams B., Loeffler C., et al. Comparative study of strength-based damage evolution in ultra-high-performance concrete (UHPC) and conventional concrete (CC) under dynamic loading / Int. J. Impact Eng. 2021. Vol. 155. P. 103893. DOI: 10.1016/j.ijimpeng.2021.103893

25. Li P. P., Brouwers H. J. H., Yu Q. Influence of key design parameters of ultra-high performance fibre reinforced concrete on in-service bullet resistance / Int. J. Impact Eng. 2019. Vol. 153. P. 103434. DOI: 10.1016/j.ijimpeng.2019.103434

26. Odnokopylov G. I., Sarkisov D. Yu. Experience in creating stands for testing reinforced concrete structures of critical oil and gas facilities / Izv. Tomsk. Politekhn. Univ. Inzh. Georesursov. 2023. Vol. 334. No. 10. P. 140 – 152 [in Russian]. DOI: 10.18799/24131830/2023/10/4250

27. Klimenov V., Kolubaev E., Anatoly K., et al. Influence of the coarse grain structure of a titanium alloy Ti-4Al-3V formed by wire-feed electron beam additive manufacturing on strain inhomogeneities and fracture / Materials. 2023. Vol. 16. P. 3901. DOI: 10.3390/ma16113901

28. Yuan Yuan, Chen Ding, Zhirui Wu, Jingyi Zhou, Yian Zhao, Wei Shao. Compressive failure analysis of seawater-mixed aluminate cement concrete based on digital image correlation technique / J. Build. Eng. 2024. Vol. 85. May. P. 108594. DOI: 10.1016/j.jobe.2024.108594

29. Ismail Bello, Belén González-Fonteboa, George Wardeh, Fernando Martínez-Abella. Characterization of concrete behavior under cyclic loading using 2D digital image correlation / J. Build. Eng. 2023. Vol. 78. November. P. 107709. DOI: 10.1016/j.jobe.2023.107709

30. Yubo Jiao, Wenlong Du, Hua Yang, Hongjun Shi. Low temperature failure behavior analysis of fiber reinforced asphalt concrete under indirect tension test using acoustic emission and digital image correlation / Case Studies Constr. Mater. 2024. Vol. 20. July. P. e02720. DOI: 10.1016/j.cscm.2023.e02720

31. Andreas Sjölander, Valeria Belloni, Viktor Peterson, Jonatan Ledin. Experimental dataset to assess the structural performance of cracked reinforced concrete using Digital Image Correlation techniques with fixed and moving cameras / Data in Brief. 2023. Vol. 51. December. P. 109703. DOI: 10.1016/j.dib.2023.109703

32. Plyaskin A. S., Ustinov A. M., Bunkov V. E. Tensile testing of carbon composite reinforced steel samples / Izv. Vuzov. Stroit. 2023. Vol. 773. No. 5. P. 20 – 26 [in Russian]. DOI: 10.32683/0536-1052-2023-773-5-20-26

33. Demewoz W. Menna, Aikaterini S. Genikomsou, Mark F. Green. Flexural performance and crack closing capacity of double-hooked-end superelastic shape memory alloy fibre-reinforced concrete beams under cyclic loading using digital image correlation / Constr. Build. Mater. 2023. Vol. 409. December. P. 133744. DOI: 10.2139/ssrn.4423242

34. Shahzad Ashraf, Magdalena Rucka. Microcrack monitoring and fracture evolution of polyolefin and steel fibre concrete beams using integrated acoustic emission and digital image correlation techniques / Constr. Build. Mater. 2023. Vol. 395. September. P. 132306. DOI: 10.1016/j.conbuildmat.2023.132306

35. Slava Markin, Viktor Mechtcherine. Quantification of plastic shrinkage and plastic shrinkage cracking of the 3D printable concretes using 2D digital image correlation / Cement and Concrete Composites. 2023. Vol. 139. May. P. 105050. DOI: 10.1016/j.cemconcomp.2023.105050

36. Hassan Fardoun, Jacqueline Saliba, Nadia Saiyouri. Earth concrete under cyclic loadings: Stress-strain curves and damage assessment by means of acoustic emission and digital image correlation techniques / Mech. Res. Comm. 2023. Vol. 131. August. P. 104158. DOI: 10.1016/j.mechrescom.2023.104158

37. Tena Galkovski, Jaime Mata-Falcón, Walter Kaufmann. Experimental investigation of bond and crack behaviour of reinforced concrete ties using distributed fibre optical sensing and digital image correlation / Eng. Structures. 2023. Vol. 292. October. P. 116467. DOI: 10.1016/j.engstruct.2023.116467

38. Ziqi Gao, Dong Lei, Hong Chen, Jintao He, Enjie Kong, Yongmin Xu. Characterization of interfacial transition zone of fly ash concrete with different coarse-aggregates by optical microscopy and digital image correlation coupled method / Mater. Today Comm. 2023. Vol. 34. March. P. 105099. DOI: 10.1016/j.mtcomm.2022.105099

39. Ustinov A., Klopotov A., Ivanov Y., et al. Deformation inhomogeneities of a hypoeutectic aluminum-silicon alloy modified by electron beam treatment / Materials. 2023. Vol. 16. P. 2329. DOI: 10.3390/ma16062329

40. Shaoqiang Meng, Zhenming Shi, Yanfei Niu, Hongchao Zheng, Chengzhi Xia. Fundamental insights into the crack propagation behavior of functional gradient ultra-high-performance concrete using the digital image correlation method / Constr. Build. Mater. 2023. Vol. 376. May. P. 131053. DOI: 10.1016/j.conbuildmat.2023.131053

41. Ali Fallah Pour, Rupesh K. Verma, Giang D. Nguyen, Ha H. Bui. Analysis of transition from diffuse to localized failure in sandstone and concrete using digital image correlation / Eng. Fract. Mech. 2022. Vol. 267. May. P. 108465. DOI: 10.1016/j.engfracmech.2022.108465

42. Erwin Wojtczak, Magdalena Rucka, Lukasz Skarżyński. Monitoring the fracture process of concrete during splitting using integrated ultrasonic coda wave interferometry, digital image correlation and X-ray micro-computed tomography / NDT & E Int. 2022. Vol. 126. March. P. 102591. DOI: 10.1016/j.ndteint.2021.102591

43. Kumpyak O., Galyautdinov Z., Galyautdinov D. Experimental study of beams on yielding supports with thrust / MATEC Web of Conferences. 2018. P. 01016. DOI: 10.1051/matecconf/201714301016

44. Zhiheng Ma, Wan Hong. Distributed displacement estimation of pre-stressed concrete beams with random cracks using long-gauge strain sensing / Case Studies Constr. Mater. 2022. Vol. 17. December. P. e01296. DOI: 10.1016/j.cscm.2022.e01296

45. Maslov S. V. The use of full-scale tensometry for studying the stress state of new power equipment / Industr. Lab. Mater. Diagn. 2022. Vol. 88. No. 12. P. 64 – 74 [in Russian]. DOI: 10.26896/1028-6861-2022-88-12-64-74

46. Galyautdinov Z. Strength of tensed and compressed concrete segments in crack spacing under short-term dynamic load / MATEC Web of Conferences. 2018. P. 01013. DOI: 10.1051/matecconf/201714301013

47. Huang Y. H., Liu L., Sham F. C., et al. Optical strain gauge vs. traditional strain gauges for concrete elasticity modulus determination / Optik. 2010. Vol. 121. Issue 18. October. P. 1635 – 1641. DOI: 10.1016/j.ijleo.2009.03.002

48. Kumpyak O., Galyautdinov Z., Galyautdinov D., Rakhimova T. Dynamic analysis of reinforced concrete beams on yielding supports / Lect. Notes Civil Eng. 2022. Vol. 170. P. 303 – 312. DOI: 10.1007/978-3-030-79983-0_28

49. Kumpyak O. G., Galyautdinov Z. R., Galyautdinov D. R. Assessment of energy efficiency of yielding supports for reinforced concrete beams under dynamic loading / IOP Conference Series: Materials Science and Engineering / III International Scientific and Practical Conference «Advanced Building Materials and Technologies 2020». 2020. P. 012012. DOI: 10.1088/1757-899x/911/1/012012

50. Kudyakov K. L., Plevkov V. S., Nevskii A. V. Strength and deformability of concrete beams reinforced by non-metallic fiber and composite rebar / IOP Conference Series: Materials Science and Engineering. Advanced Materials in Construction and Engineering / International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering. TSUAB 2014. 2015. P. 012030. DOI: 10.1088/1757-899x/71/1/012030

51. Goffin B., Banthia N., Yonemitsu N. Use of infrared thermal imaging to detect corrosion of epoxy coated and uncoated rebar in concrete / Constr. Build. Mater. 2020. Vol. 263. P. 120162. DOI: 10.1016/j.conbuildmat.2020.120162

52. Salim Barbhuiya, Bibhuti Bhusan Das, Maria Idrees. Thermal energy storage in concrete: A comprehensive review on fundamentals, technology and sustainability / J. Build. Eng. 2024. Vol. 82. April. P. 108302. DOI: 10.1016/j.jobe.2023.108302

53. Pedram M., Taylor S., Hamill G., et al. Objective characterisation of reinforced concrete with progressive corrosion defects through clustering and thresholding of infrared images / Measurement. 2024. Vol. 225. February. P. 114017. DOI: 10.1016/j.measurement.2023.114017

54. Davood Mostofinejad, Omid Aghamohammadi, Hadi Bahmani, Saeed Ebrahimi. Improving thermal characteristics and energy absorption of concrete by recycled rubber and silica fume / Devel. Built Environm. 2023. Vol. 16. December. P. 100221. DOI: 10.1016/j.dibe.2023.100221


Рецензия

Для цитирования:


Саркисов Д.Ю., Устинов А.М., Пляскин A.С., Усеинов Э.С. Комплексный экспериментальный анализ процессов деформирования и трещинообразования в железобетонном элементе. Заводская лаборатория. Диагностика материалов. 2025;91(11):64-76. https://doi.org/10.26896/1028-6861-2025-91-11-64-76

For citation:


Sarkisov D.Yu., Ustinov A.M., Plyaskin A.S., Useinov E.S. Complex experimental analysis of deformation and cracking processes in a reinforced concrete element. Industrial laboratory. Diagnostics of materials. 2025;91(11):64-76. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-11-64-76

Просмотров: 181

JATS XML

ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)