Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Method for determination of continuous fibers reinforced composite delamination resistance in bending of beams with lateral transverse notch

https://doi.org/10.26896/1028-6861-2025-91-11-77-84

Abstract

Important strength characteristics of fiber-reinforced composites with polymer matrix include their resistance to delamination and splitting, which is traditionally determined in bending of short beams (in terms of interlayer shear strength) or specimens with artificial delaminations (in terms of critical energy release rate, i.e., specific work of delamination). The implementation of these techniques is associated with known difficulties in interpretation and comparison of results. The method of determining the critical value of the stress intensity factor at the occurrence of delamination crack near the apex of the transverse layer notch is proposed in this paper. It allows: to compare the crack resistance of various composites and metals, to estimate the potential strength of unidirectional fiber-reinforced composites at fracture by the mechanism of multiple splitting, to formulate the requirements of «equal strength» under the condition of simultaneous occurrence of different types of fracture. Experimental results on the resistance to delamination of composites with different reinforcement schemes in terms of the critical stress intensity factor at crack rotation and their comparison with the interlayer strength of the material are presented.

About the Authors

A. N. Polilov
Mechanical Engineering Research Institute of the Russian Academy of Sciences
Россия

Alexander N. Polilov

4, Malyi Kharitonyevsky per., Moscow, 101000



D. D. Vlasov
Mechanical Engineering Research Institute of the Russian Academy of Sciences
Россия

Danila D. Vlasov

4, Malyi Kharitonyevsky per., Moscow, 101000



References

1. Walsh P. H. Linear Fracture mechanics in orthotropic materials / Eng. Fracture Mech. 1972. Vol. 4. No. 3. P. 533 – 541. DOI: 10.1016/0013-7944(72)90064-1

2. Khaji Z., Fakoor M. Examining the effect of crack initiation angle on fracture behavior of orthotropic materials under mixed- mode I/II loading / Int. J. Solids Struct. 2022. Vol. 256. 111952. DOI: 10.1016/j.ijsolstr.2022.111952

3. Esmaeili A., Mohammadi B., Yousefi A. fracture parameters and crack initiation assessment employing mixed-mode I/II fracture criterion in laminate composites using digital image correlation method / Theor. Appl. Fracture Mech. 2023. Vol. 127. 104095. DOI: 10.1016/j.tafmec.2023.104095

4. Biswal S., Singh G. Determination of fracture toughness and traction-separation relation in mode I/II of a natural quasi-brittle orthotropic composite using multi-specimen approach / Eng. Fracture Mech. 2023. Vol. 282. 109163. DOI: 10.1016/j.engfracmech.2023.109163

5. Sako R., Aoki R., Higuchi R., et al. Experiments on the mode II fracture toughness in ENF tests of CFRP curved beams / Composite Struct. 2022. Vol. 292. 115692. DOI: 10.1016/j.compstruct.2022.115692

6. Sanford R. L., Stonesifer F. R. Fracture toughness measurements in unidirectional glass-reinforced plastics / J. Compos. Mater. 1971. Vol. 5. No. 2. P. 241 – 245. DOI: 10.1177/002199837100500208

7. Raimondo A., Urcelay Oca I., Bisagni C. Influence of interface ply orientation on delamination growth in composite laminates / J. Compos. Mater. 2021. Vol. 55. No. 27. P. 3955 – 3972. DOI: 10.1177/00219983211031636

8. Pankov A. V., Tokar V. L., Petronyuk Y. S., et al. Determination of crack resistance characteristics of layered carbon plastics on specimens without a crack initiator using the method of acoustic microscopy / Industr. Lab. Mater. Diagn. 2020. Vol. 86. No. 8. P. 58 – 65 [in Russian]. DOI: 10.26896/1028-6861-2020-86-8-58-65

9. Fakoor M., Shahsavar S., Berto F. Mixed-mode fracture assessment of wooden structures with cracks initiated along and across the fibers considering non-singular T-stress term / Wood Sci. Technol. 2022. Vol. 56. P. 1261 – 1291. DOI: 10.1007/s00226-022-01392-z

10. Liu W., Feng P., Huang J. Bilinear softening model and double K fracture criterion for quasi-brittle fracture of pultruded FRP composites / Composite Struct. 2017. Vol. 160. P. 1119 – 1125. DOI: 10.1016/j.compstruct.2016.10.134

11. Zobnin A. I., Lomakin E. V. Central transverse crack in an orthotropic elastic strip / Izv. AN SSSR. MTT. 1974. No. 1. P. 44 – 52 [in Russian].

12. Garpelli F. P., Gonzalez R. F. M., Sales R. C. M., et al. Experimental characterization of Mode II fatigue delamination growth onset in composite joints / J. Compos. Mater. 2022. Vol. 56. No. 1. P. 115 – 132. DOI: 10.1177/00219983211056736

13. Bokhoeva L. A., Baldanov A. B., Rogov V. E., et al. Influence of nanopowders addition on strength of multilayer composite materials / Industr. Lab. Mater. Diagn. 2021. Vol. 87. No. 8. P. 42 – 50 [in Russian]. DOI: 10.26896/1028-6861-2020-86-8-58-65

14. Polilov A. N., Khokhlov V. K. Calculated criterion of composite beams strength at bending / Mech. Eng. 1979. N. 2. P. 53 – 57 [in Russian].

15. Polilov A. N., Vlasov D. D., Tatus N. A. Refined criterion of delamination at bending of a composite beam / Industr. Lab. Mater. Diagn. 2023. Vol. 89. No. 10. P. 63 – 73 [in Russian]. DOI: 10.26896/1028-6861-2023-89-10-63-73

16. Ostapska K., Malo R. A. Wedge splitting test of wood for fracture parameters estimation of Norway Spruce / Eng. Fracture Mech. 2020. Vol. 232. 107024. DOI: 10.1016/j.engfracmech.2020.107024

17. Yoshihara H. Mode II fracture mechanics properties of wood measured by the asymmetric four-point bending test using a single-edge-notched specimen / Eng. Fracture Mech. 2008. Vol. 75. No. 16. P. 4727 – 4739. DOI: 10.1016/j.engfracmech.2008.06.010

18. Khaji Z., Fakoor M. Strain energy release rate in combination with reinforcement isotropic solid model (SERIS): A new mixed-mode I/II criterion to investigate fracture behavior of orthotropic materials / Theor. Appl. Fracture Mech. 2021. Vol. 113. 102962. DOI: 10.1016/j.tafmec.2021.102962

19. Moustaphaoui A. E., Chouaf A., Kimakh R. Experimental and numerical study of the delamination of Ceiba plywood under mode I, mode II and mixed-mode (I + II) loading using the DCB, ELS and MMF tests / Int. J. Fracture. 2021. Vol. 231. No. 6. P. 1 – 20. DOI: 10.1007/s10704-021-00557-4

20. Polilov A. N. Resistance to delamination of unidirectional composites / Mech. Eng. 1978. No. 5. P. 74 – 78 [in Russian].

21. Buznikov Yu. N., Polilov A. N., Khokhlov V. K., Finogenov G. N. Determination of resistance of carbon plastics to interlayer fracture near notches / Mech. Eng. 1980. No. 1. P. 114 – 118 [in Russian].

22. Rabotnov Yu. N. Mechanics of deformable solid. Textbook for students of mechanical, mathematical and physical specialties of universities. — Moscow: Nauka, 1988. — 712 p. [in Russian].

23. Aniskovich E. V., Lepikhin A. M., Moskvichev V. V. Estimation of static crack resistance of thin-walled vessels working under pressure / Industr. Lab. Mater. Diagn. 2018. Vol. 84. No. 9. P. 55 – 63 [in Russian]. DOI: 10.26896/1028-6861-2018-84-9-55-63

24. Harrison N. L. Strain energy release rates for turning cracks / Fibre Sci. Technol. 1972. Vol. 5. No. 3. P. 197 – 212. DOI: 10.1016/0015-0568(72)90015-2

25. Harrison N. L. Splitting of fiber-reinforced materials / Fibre Sci. Technol. 1973. Vol. 6. No. 1. P. 25 – 38. DOI: 10.1016/0015-0568(73)90014-6

26. Polilov A. N., Tatus N. A. Principles of improving the structure of composite products based on the study of biotechnology and biomaterials / MSCU Bull. 2021. Vol. 16. No. 9. P. 1191 – 1216 [in Russian]. DOI: 10.22227/1997-0935.2021.9.1191-1216


Review

For citations:


Polilov A.N., Vlasov D.D. Method for determination of continuous fibers reinforced composite delamination resistance in bending of beams with lateral transverse notch. Industrial laboratory. Diagnostics of materials. 2025;91(11):77-84. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-11-77-84

Views: 170

JATS XML

ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)