Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Effect of the elemental composition of yttrium ferrogranate on the properties of film structures Y3Fe5O12/GaAs

https://doi.org/10.26896/1028-6861-2025-91-12-5-13

Abstract

Due to unique electromagnetic and magneto-optical properties, iron- yttrium garnet (Y3Fe5O12, YIG) and its solid solutions are used in the production of film structures for a new field of spin electronics, known as magnonics. It is essential to control the chemical composition of synthesized YIG, including both primary (Fe, Y) and trace elements (Li, Be, B, Na, Mg, Al, Si, P, K, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Zr, Nb, Mo, Cd, Sn, Sb, Te, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Tl, Pb, Bi, Th, U), because the presence of impurities above 10–2 wt.% significantly broadens the ferromagnetic resonance line of the films and deteriorates the properties of the film structures. It is shown that the use of two methods, atomic emission (ICP AES) and mass spectrometry with inductively coupled plasma (ICP MS), under selected conditions of analysis, allows for the accuracy of its results and a wide range of detectable elements. The peculiarities of the synthesis of YIG film structures on a gallium arsenide substrate using a novel none-epitaxial method proposed by the authors have been studied. The effect of YIG impurity composition on the structure and properties of the resulting films is shown. To prevent the interaction between Y3Fe5O12 and GaAs at the interface during film crystallization, a barrier layer of aluminum oxide was pre-sprayed onto the substrate. The ferromagnetic resonance spectra of Y3Fe5O12/AlOx/GaAs films obtained by various methods have been studied. It was found that the width of the FMR line for films obtained by spraying YIG single crystals is 30 – 40 Oe less than for films contained impurity elements.

About the Authors

N. A. Korotkova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Nataliya A. Korotkova

31, bld. 1, Leninsky prosp., Moscow, 119991



M. S. Doronina
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Marina S. Doronina

31, bld. 1, Leninsky prosp., Moscow, 119991



M. N. Smirnova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Mariya N. Smirnova

31, bld. 1, Leninsky prosp., Moscow, 119991



V. A. Ketsko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Valery A. Ketsko

31, bld. 1, Leninsky prosp., Moscow, 119991



V. B. Baranovskaya
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Russian Federation

Vasilisa B. Baranovskaya

31, bld. 1, Leninsky prosp., Moscow, 119991



References

1. Shen H., Zhao Y., Li L., et al. Recent advances of rare earth iron garnet magneto-optical single crystals / J. Cryst. Growth. 2024. Vol. 631. 127626. DOI: 10.1016/j.jcrysgro.2024.127626

2. Subbotin I. A., Pashaev E. M., Belyaeva A. O., et al. Microstructure of bismuth doped yttrium iron garnets thin films / Kristallografiya. 2025. Vol. 70. No. 3. P. 529 – 540 [in Russian]. DOI: 10.31857/s0023476125030206

3. Fang Y., Shen H., Ma H., et al. Growth, optical dispersion and magnetic behavior of Dy3+ doped yttrium iron garnet crystals / J. Rare Earths. 2024. Vol. 42. No. 6. P. 1110 – 1117. DOI: 10.1016/j.jre.2023.07.025

4. Wang H., Meng J., Guo P., et al. Exploring the mechanism of the photo-excited spin currents in W/Y3Fe5O12 heterostructure / Appl. Surf. Sci. 2025. Vol. 692. 16277. DOI: 10.1016/j.apsusc.2025.162779

5. Mohammad A. A., Ibrahim N. B. Comprehensive study of Ni-substitution yttrium iron garnet impact of substitution levels annealing temperature on structural and magnetic properties / J. Magn. Magn. Mater. 2025. Vol. 628. P. 173160 – 173167. DOI: 10.1016/j.jmmm.2025.173160

6. Bhargavi M., Kaarthik J., Reddy S. G., Venkateswarlu A. Enhanced optical, dielectric, and magnetic characteristics of praseodymium and bismuth co-doped yttrium iron garnet ceramics / Phys. B. Condens. Matter. 2025. Vol. 703. P. 417019 – 417031. DOI: 10.1016/j.physb.2025.417019

7. Prabhakaran С., Karthikeyan N., Anbarasu V., Vishista K. Interplay of structure – property – dielectric correlations in (x)YFeO3 + (1 – x)Y3Fe5O12 (0 ≤ x ≤ 1) ceramic composite systems / J. Alloys Compd. 2025. Vol. 1043. No. 20. 184234. DOI: 10.1016/j.jallcom.2025.184234

8. Ochoa H., Saavedra I., Parra C., Morán O. Dielectric behavior of Ho3+-doped Y3Fe5O12 garnet-type ceramics at high temperatures / Ceram. Int. 2025. Vol. 51. No. 25. P. 44715 – 44728. DOI: 10.1016/j.ceramint.2025.07.198

9. Long Z., Yu R., Meng X., et al. Preparation of BaTiO3/ Y3Fe5O12 bilayers and their ferroelectric/magnetic properties / Thin Solid Films. 2024. Vol. 803. No. 30. 140480. DOI: 10.1016/j.tsf.2024.140480

10. Nikitov S. A., Safin A. R., Kalyabin D. V., et al. Dielectric magnonics: from gigahertz to terahertz / Physics-Uspekhi. 2020. Vol. 190. No. 10. P. 945 – 974. DOI: 10.3367/ufne.2019.07.038609

11. Kuila M., Sagdeo A., Lanuakum A. Robust perpendicular magnetic anisotropy in Ce substituted yttrium iron garnet epitaxial thin films / J. Appl. Phys. 2022. Vol. 131. 20390. DOI: 10.1063/5.0085572

12. Barman A., Gubbiotti G., Ladak S., et al. The magnonics roadmap / J. Phys. Condens. Matter. 2021. Vol. 33. P. 413001 – 413073. DOI: 10.1088/1361-648x/abec1a

13. Spaldin N. A., Ramesh R. Advances in magnetoelectric multiferroics / Nat. Mater. 2019. Vol. 18. P. 203 – 212. DOI: 10.1038/s41563-018-0275-2

14. Munir A., Abbas M., Wang G. Nonreciprocal cavity magnonics system for amplification of photonic spin Hall effect / Chaos Solitons Fractals. 2025. Vol. 192. 116019. DOI: 10.1016/j.chaos.2025.116019

15. Nikitov S. A., Kalyabin D. V., Lisenkov I. V., et al. Magnonics: a new research area in spintronics and spin wave electronics / Physics- Uspekhi. 2015. Vol. 185. No. 10. P. 1002 – 1028. DOI: 10.3367/ufne.0185.201510m.1099

16. Carter S., Clough R., Fisher A., et al. Atomic spectrometry update: review of advances in the analysis of metals, chemicals and materials / J. Anal. At. Spectrom. 2018. Vol. 33. 1802. DOI: 10.1039/c8ja90039f

17. Balaram V. Strategies to overcome interferences in elemental and isotopic geochemical analysis by quadrupole inductively coupled plasma mass spectrometry: A critical evaluation of the recent developments / Rapid Commun. Mass Spectrom. 2021. Vol. 35. e9065. DOI: 10.1002/rcm.9065

18. Korotkova N. A., Petrova K. V., Baranovskaya V. B. Analysis of cerium oxide by mass spectrometry and optical emission spectrometry with inductively coupled plasma / J. Anal. Chem. 2021. Vol. 76. P. 1384 – 1394. DOI: 10.1134/s1061934821120066

19. Balaram V., Rahaman W., Roy P. Recent advances in MC-ICP-MS applications in Earth and environmental sciences: Challenges and solutions / Geosyst. Geoenviron. 2022. Vol. 1. No. 2. 100019. DOI: 10.1016/j.geogeo.2021.100019

20. Brenner I., Zander A. T. Axially and radially viewed inductively coupled plasmas — a critical review / Spectrochim. Acta Part B. 2000. Vol. 55. No. 8. P. 1195 – 1240. DOI: 10.1016/s0584-8547(00)00243-3

21. Korotkova N. A., Petrova K. V., Baranovskaya V. B. Analysis of cerium-substituted yttrium iron garnet using inductively coupled plasma atomic emission spectrometry with preliminary decomposition in a microwave system / Inorg. Mater. 2024. Vol. 60. P. 84 – 52. DOI: 10.1134/s0020168524700122

22. Korotkova N. A., Arkhipenko A. A., Smirnova M. N., et al. Development of spectral methods for the analysis of nanocized ferrogarnets of the Y3 – xCexFe5 – yGayO12 composition / Nanosyst. Phys. Chem. Math. 2024. Vol. 15. No. 6. P. 855 – 866. DOI: 10.17586/2220-8054-2024-15-6-855-866

23. Stognij A. I., Lutsev L. V., Bursian V. E., Novitskii N. N. Growth and spin-wave properties of thin Y3Fe5O12 films on silicon substrates / J. Appl. Phys. 2015. Vol. 118. P. 023905 – 023914. DOI: 10.1063/1.4926475

24. Gashimzade F. M., Burdukov Yu. M., Goldberg Yu. A. Gallium arsenide. Production, properties and application. — Moscow: Nauka, 1973. — 471 p. [in Russian].

25. RF Pat. No. RU2657674C1. Smirnova M. N., Stogniy A. I., Bespalov A. V., et al. Method for producing a Mg(Fe1 – xGax)2O4/Si heterostructure with a stable interphase boundary. Publ. 14.06.2018 [in Russian].


Review

For citations:


Korotkova N.A., Doronina M.S., Smirnova M.N., Ketsko V.A., Baranovskaya V.B. Effect of the elemental composition of yttrium ferrogranate on the properties of film structures Y3Fe5O12/GaAs. Industrial laboratory. Diagnostics of materials. 2025;91(12):5-13. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-12-5-13

Views: 50


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)