Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Determination of total arsenic by stripping voltammetry with a simplified sample preparation procedure: application to seafood, minerals and semiconductors

https://doi.org/10.26896/1028-6861-2025-91-12-20-30

Abstract

A technique for stripping voltammetric determination of arsenic on a gold-film electrode (GFE) with a simplified procedure for preliminary reduction of As (V) to As (III) is proposed. A mixed reducing reagent based on sodium metabisulfite and thiosulfate was used to convert arsenic into an electroactive form, allowing complete quantitative reduction to be achieved within 10 min. The GFE was prepared ex situ by electrodeposition of a gold layer on a rotating glassy carbon electrode (GCE) substrate using potentiostatic electrolysis 300 sec from 1 mM HAuCl4 solution at a potential of –300 mV. With the selected optimal parameters of analyte electroaccumulation, the linear range of the arsenic electrodissolution current was observed from 10 to 200 μg/L, the detection limit was 1 μg/L with an accumulation time of 120 s. The effect of the presence of Cu (II), Bi (III), Pb (II), Fe (III), Mn (II), Zn (II), Cl– ions on the arsenic signal was estimated. To eliminate the contribution of interfering influences to the results, a background electrolyte was used, which was a mixture of 1 M acetate buffer and 0.01 M EDTA. To standardize the technique the measurement quality indicators were assessed in accordance with RMG 61–2010. The proposed technique was applied to determine arsenic in natural water, seafood and inorganic materials; the accuracy of the analysis results is confirmed by atomic absorption spectrometry with electrothermal atomization.

About the Authors

A. V. Dymova
MIREA — Russian Technological University, M. V. Lomonosov Institute of Fine Chemical Technologies
Russian Federation

Alina V. Dymova

86, prosp. Vernadskogo, Moscow, 119571



A. S. Eremeeva
MIREA — Russian Technological University, M. V. Lomonosov Institute of Fine Chemical Technologies
Russian Federation

Anastasia S. Eremeeva

86, prosp. Vernadskogo, Moscow, 119571



M. A. Lazov
MIREA — Russian Technological University, M. V. Lomonosov Institute of Fine Chemical Technologies
Russian Federation

Mikhail A. Lazov

86, prosp. Vernadskogo, Moscow, 119571



S. V. Andreev
MIREA — Russian Technological University, M. V. Lomonosov Institute of Fine Chemical Technologies; F. F. Erisman Federal Scientific Centre of Hygiene of Rospotrebnadzor
Russian Federation

Sergey V. Andreev

86, prosp. Vernadskogo, Moscow, 119571

18a, Nauchny proezd, Moscow, 117246



N. K. Zaitsev
Econiks-Expert LLC
Russian Federation

Nikolay K. Zaitsev

22nd km, Kievskoe shosse, Moskovsky settlement, 108811



L. Yu. Martynov
MIREA — Russian Technological University, M. V. Lomonosov Institute of Fine Chemical Technologies
Russian Federation

Leonid Yu. Martynov

86, prosp. Vernadskogo, Moscow, 119571



References

1. Virk R. K., Garla R., Kaushal N., et al. The relevance of arsenic speciation analysis in health & medicine / Chemosphere. 2023. Vol. 316. 137735. DOI: 10.1016/j.chemosphere.2023.137735

2. Patel K. S., Panday P. K., Martin-Ramos P., et al. A review on arsenic in the environment: contamination, mobility, sources, and exposure / RSC Adv. 2023. Vol. 13. No. 13. P. 8803 – 8821. DOI: 10.1039/d3ra00789h

3. TR TS 021/2011. Technical Regulations of the Customs Union «On Food Product Safety» (as amended on April 22, 2024) dated December 9, 2011. No. 880. 2024. — 214 p. [in Russian].

4. Kim I. N., Shtanko T. I., Kraschenko V. V. Food Chemistry. Presence of Metals in Foods. — Moscow: Yurayt, 2019. — 213 p. [in Russian].

5. Filenko I. A. Determination of arsenic by flame and electrothermal atomic absorption spectrometry after microwave decomposition of samples. Comparison of methods / Analitika. 2024. Vol. 14. No. 1. P. 40 – 44 [in Russian]. DOI: 10.22184/2227-572x.2024.14.1.40.44

6. Pupyshev A. A. Atomic Absorption Spectral Analysis. — Moscow: Tekhnosfera, 2009. — 784 p. [in Russian].

7. Belozerova A. A., Pechishcheva N. V., Shunyaev K. Yu. Methods for the determination of arsenic in metallurgical materials / J. Anal. Chem. 2023. Vol. 78. No. 3. P. 294 – 302. DOI: 10.1134/s1061934823030036

8. Grachev S. A., Tretyakov A. V., Amelin V. G. Optimization of sample preparation conditions in the determination of total arsenic in fish and seafoods by atomic absorption spectrometry with electrothermal atomization / Industr. Lab. Mater. Diagn. 2023. Vol. 89. No. 1. P. 5 – 10 [in Russian]. DOI: 10.26896/1028-6861-2023-89-1-5-10

9. Liu Z. G., Huang X. J. Voltammetric determination of inorganic arsenic / TrAC — Trends Anal. Chem. 2014. Vol. 60. P. 25 – 35. DOI: 10.1016/j.trac.2014.04.014

10. Hu H., Xie B., Lu Y., Zhu J. Advances in Electrochemical Detection Electrodes for As (III) / Nanomaterials. 2022. Vol. 12. No. 5. 781. DOI: 10.3390/nano12050781

11. Metrohm Ltd. Application Bulletin 226/2 e. Determination of arsenic by anodic stripping voltammetry at the rotating gold electrode. P. 1 – 9.

12. Khustenko L. A., Tolmacheva T. P., Nazarov B. F. A rapid method of sample preparation for determining arsenic in water by stripping voltammetry / J. Anal. Chem. 2009. Vol. 64. No. 11. P. 1136 – 1140. DOI: 10.1134/s1061934809110082

13. Martynov L. Yu., Dymova A. V., Semyachkin I. A., et al. Electrochemical and microscopic study of a rotating disk Gold-Film electrode for voltammetric determination of arsenic (III) / Microchem. J. 2024. Vol. 205. 111177. DOI: 10.1016/j.microc.2024.111177

14. Eikelboom M., Wang Y., Portlock G., et al. Voltammetric determination of inorganic arsenic in mildly acidified (pH 4.7) groundwaters from Mexico and India / Anal. Chim. Acta. 2023. Vol. 1276. 341589. DOI: 10.1016/j.aca.2023.341589

15. Zaichko A. V., Ivanona E. E., Noskova G. N., Tolmacheva T. P. Determination of Arsenic in Food Products by Inversion Voltammetry / Pishch. Prom. 2005. No. 6. P. 10 – 12 [in Russian].

16. Schouwenburg J. C., Walinga I. The rapid determination of phosphorus in presence of arsenic, silicon and germanium / Anal. Chim. Acta. 1967. Vol. 37. P. 271 – 274. DOI: 10.1016/s0003-2670(01)80671-1

17. He Y., Zheng Y., Ramnaraine M., Locke D. C. Differential pulse cathodic stripping voltammetric speciation of trace level inorganic arsenic compounds in natural water samples / Anal. Chim. Acta. 2004. Vol. 511. No. 1. P. 55 – 61. DOI: 10.1016/j.aca.2004.01.036

18. Sun Y.-C., Mierzwa J., Yang M.-H. New method of gold-film electrode preparation for anodic stripping voltammetric determination of arsenic (III and V) in seawater / Talanta. 1997. Vol. 44. No. 8. P. 1379 – 1387. DOI: 10.1016/s0039-9140(96)02197-2

19. Dugo G., La Pera L., Lo Turco V., Di Bella G. Speciation of inorganic arsenic in alimentary and environmental aqueous samples by using derivative anodic stripping chronopotentiometry (dASCP) / Chemosphere. 2005. Vol. 61. No. 8. P. 1093 – 1101. DOI: 10.1016/j.chemosphere.2005.03.049

20. GOST 31628–2012. Food products and food raw materials. Inverse voltammetric method for determining the mass concentration of arsenic. — Moscow: Standartinform, 2014. — 14 p. [in Russian].

21. Linsinger T. P. J., Josephs R. D. Limitations of the application of the Horwitz equation / TrAC — Trends Anal. Chem. 2006. Vol. 25. No. 11. P. 1125 – 1130. DOI: 10.1016/j.trac.2006.11.002

22. RMG 61–2010. Indicators of accuracy, correctness, and precision of methods for quantitative chemical analysis. — Moscow: Standartinform, 2013. — 62 p. [in Russian].


Review

For citations:


Dymova A.V., Eremeeva A.S., Lazov M.A., Andreev S.V., Zaitsev N.K., Martynov L.Yu. Determination of total arsenic by stripping voltammetry with a simplified sample preparation procedure: application to seafood, minerals and semiconductors. Industrial laboratory. Diagnostics of materials. 2025;91(12):20-30. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-12-20-30

Views: 42


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)