Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of high-temperature forming of TiC-based metal-ceramic composite materials with a metal matrix

https://doi.org/10.26896/1028-6861-2025-91-12-31-37

Abstract

When obtaining a finished product with minimal porosity using compaction methods, it is necessary to evaluate the material’s formability. Metal-ceramic materials, especially refractory ones, are characterized by a very narrow temperature-time interval in which they possess the ability for plastic deformation. The paper presents the results of a study on the high-temperature forming of composite metal- ceramic materials based on TiC with a metal matrix. A high-alloy steel powder Kh18N15M was used as the metal matrix in an amount of 10 – 70 wt.%. Powder materials (titanium and carbon black) were used in the synthesis of the metal-ceramic composite, which form titanium carbide through direct exothermic interaction. The formability of the synthesized material was determined using the free SHS-compression method. The criterion was the deformation degree — the ratio of the difference between the areas of the deformed sample and the initial workpiece to the area of the deformed sample. It was found that with an increase in the amount of metal binder from 10 to 60 wt.%, the combustion temperature and rate decrease by 1.6 and 23 times, respectively, and with a metal binder content of 70 wt.%, synthesis is impossible. It is shown that, regardless of the metal matrix content in the material, its structure and phase composition do not change qualitatively. The obtained results can be used to improve the methodology for synthesizing compact composite materials based on TiC with a Kh18N15M metal matrix to achieve minimal porosity.

About the Authors

A. D. Bazhina
Merzhanov Institute of Structural Macrokinetics and Materials Science (ISMAN), RAS
Russian Federation

Arina D. Bazhina

8, ul. Akademika Osipyana, Chernogolovka, Moscow obl., 142432



M. S. Antipov
Merzhanov Institute of Structural Macrokinetics and Materials Science (ISMAN), RAS
Russian Federation

Mikhail S. Antipov

8, ul. Akademika Osipyana, Chernogolovka, Moscow obl., 142432



A. S. Ivanov
Merzhanov Institute of Structural Macrokinetics and Materials Science (ISMAN), RAS
Russian Federation

Artem S. Ivanov

8, ul. Akademika Osipyana, Chernogolovka, Moscow obl., 142432



P. M. Bazhin
Merzhanov Institute of Structural Macrokinetics and Materials Science (ISMAN), RAS
Russian Federation

Pavel M. Bazhin

8, ul. Akademika Osipyana, Chernogolovka, Moscow obl., 142432



References

1. Levinsky Yu. V. Metal powders and powder materials. — Moscow: Ekomet, 2005. — 520 p. [in Russian].

2. Stolin A. M., Kozlov V. V., Kalugin A. V. Processes of combustion product formation by free SHS compression method / Dokl. RAN. 1999. Vol. 365. No. 2. P. 225 – 227 [in Russian].

3. Stolin A. M., Bazhin P. M., Alymov M. I. Deformation of SHS products under combustion conditions / Inorg. Mater. 2016. Vol. 52. No. 6. P. 618 – 624. DOI: 10.1134/s0020168516060169

4. Krutskiy Yu. L., Gudyma T. S., Kuchumova I. D., et al. Carbides of some transition metals. Properties, areas of application and methods of production. Part 1. Titanium and vanadium carbides (review) / Izv. Vuzov. 2022. Vol. 65. No. 5. P. 305 – 322 [in Russian]. DOI: 10.17073/0368-0797-2022-5-305-322

5. Shiryaeva L. S., Garbuzova A. K., Galevsky G. V. Production and use of titanium carbide (assessment, trends, forecasts) / Nauch.-Tekhn. Vedom. SPbGPU. 2014. No. 2(195). P. 100 – 108 [in Russian].

6. Chayka T. V., Gavrish V. M., Pavlenko V. I., Cherkashina N. I. Influence of high-dispersive powder mixture of WC and TiC on the composite materials properties / Nanotekhnol. Stroit. 2023. Vol. 15. No. 1. P. 14 – 26 [in Russian]. DOI: 10.15828/2075-8545-2023-15-1-14-26

7. Kovalyova S. A., Zhornik V. I., Vityaz P. A., et al. Structure and properties of powder materials based on mechanosynthesized metal matrix composites Ni-TiC / Mekh. Mash. Mekhan. Mater. 2024. No. 1(66). P. 71 – 79 [in Russian]. DOI: 10.46864/1995-0470-2024-1-66-71-79

8. Lvov V. A., Senatov F. S., Shinkaryov A. S., et al. Experimental 3D printed re-entrant auxetic and honeycomb spinal cages based on Ti-6Al- 4V: Computer-aided design concept and mechanical characterization / Compos. Struct. 2023. No. 310. P. 116766. DOI: 10.1016/j.compstruct.2023.116766

9. Pribytkov G. A., Firsina I. A., Korzhova V. V., et al. Synthesis of composite powders «TiC-NiCrBSi alloy binder» for surfacing and spraying of wear-resistant coatings / Izv. Vuzov. 2018. No. 2. P. 43 – 53 [in Russian]. DOI: 10.17073/1997-308x-2018-2-43-53

10. Asnaashari S., Ghambari M. Preparation and characterization of composite WC/Co through rapid omnidirectional compaction / J. Alloys Compd. 2020. Vol. 859. P. 157764. DOI: 10.1016/j.jallcom.2020.157764

11. Laptiev A. V. Some trends in improving WC–Co hardmetals. II. Functionally graded hardmetals / Powder Metall. Met. Ceram. 2019. Vol. 58. P. 170 – 183. DOI: 10.1007/s11106-019-00061-4

12. Bozorov A. N., Kayumov B. B., Asadova M. A. Modification of hard alloy VK-6 and VK-8 to increase wear resistance by alloying it with rhenium / Universum Tech. Sci. 2023. No. 10(115) [in Russian]. DOI: 10.32743/unitech.2023.115.10.16131

13. Kovaleva S. A., Zhornik V. I., Veremey I. S., et al. Study of heat resistance of materials based on dispersion-hardened Ni/TiC mechanocomposites / Akt. Vopr. Mashinoved. 2024. Vol. 13. P. 282 – 287 [in Russian].

14. Walunj G., Bearden A., Patil A., et al. Mechanical and tribological behavior of mechanically alloyed Ni-TiC composites processed via spark plasma sintering / Materials. 2020. Vol. 13(22). P. 5306. DOI: 10.3390/ma13225306

15. Lepakova O. K., Shkoda O. A., Braverman B. Sh. Formation of a dense product of the Ti-B-Fe system by self-propagating high-temperature synthesis / Russ. J. Phys. Chem. A. 2025. Vol. 99. No. 2. P. 344 – 349. DOI: 10.1134/s0036024424703382

16. Samboruk A. A., Kuznets E. A., Makarenko A. G., Samboruk A. R. Technology of obtaining titanium carbide from granulated charge by the SHS method / Vestn. SGTU. 2008. No. 1(21). P. 124 – 129 [in Russian].

17. Pugacheva N. B., Nikolin Yu. V., Bykova T. M., Senaeva E. I. Structure and Properties of a SHS Cu-Ti-C-B Composite / Fiz. Met. Metalloved. 2022. Vol. 123. No. 1. P. 43 – 49 [in Russian]. DOI: 10.1134/s0031918x22010100

18. Bazhin P., Konstantinov A., Chizhikov A., et al. Compactability regularities observed during cold uniaxial pressing of layered powder green samples based on Ti-Al-Nb-Mo-B and Ti-B / Metals. 2023. Vol. 13. P. 1827. DOI: 10.3390/met13111827


Review

For citations:


Bazhina A.D., Antipov M.S., Ivanov A.S., Bazhin P.M. Study of high-temperature forming of TiC-based metal-ceramic composite materials with a metal matrix. Industrial laboratory. Diagnostics of materials. 2025;91(12):31-37. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-12-31-37

Views: 38


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)