Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Determination of dielectric characteristics of materials using a volumetric resonator

https://doi.org/10.26896/1028-6861-2025-91-12-38-47

Abstract

The development of microwave electrical technologies requires accurate and reliable measurements of the dielectric properties of materials. This is especially important for materials with a wide range of dielectric constant and dielectric loss tangent values, for which traditional analysis methods are either insufficiently sensitive or excessively complex. The purpose of this work is to determine the dielectric characteristics of materials using a volume resonator at a frequency of 2.45 GHz. The parameters of the resonator, such as the resonant frequency and quality factor, were analyzed to determine the dielectric properties of the materials. Numerical modeling of the resonator was performed to study the distribution of electric and magnetic fields of the main mode TM010. The analysis of the excitation conditions of the main and parasitic modes revealed their influence on the accuracy of measuring the parameters of the resonator and determining the dielectric properties of objects. It is shown that the calculated values of the dielectric constant and the tangent of the loss angle of materials are in good agreement with the literature data (the error is ~3 and ~6%, respectively). The results obtained can be used to determine the dielectric characteristics of materials in a wide range of values by the resonator method and to study the electrophysical properties of materials and media.

About the Authors

A. S. Sivak
Scientific Production Enterprise «Kontakt»
Russian Federation

Anton S. Sivak

1, str. 1, ul. B. V. Spitsyna, Saratov, 410086



S. G. Kalganova
Scientific Production Enterprise «Kontakt»; Saratov State University
Russian Federation

Svetlana G. Kalganova

1, str. 1, ul. B. V. Spitsyna, Saratov, 410086

83, ul. Astrakhanskaya, Saratov, 410012



S. V. Trigorly
Scientific Production Enterprise «Kontakt»
Russian Federation

Sergey V. Trigorly

1, str. 1, ul. B. V. Spitsyna, Saratov, 410086



J. A. Kadykova
Scientific Production Enterprise «Kontakt»; Saratov State University
Russian Federation

Julia A. Kadykova

1, str. 1, ul. B. V. Spitsyna, Saratov, 410086

83, ul. Astrakhanskaya, Saratov, 410012



G. V. Sakhadzhi
Scientific Production Enterprise «Kontakt»; Saratov State University
Russian Federation

George V. Sakhadzhi

1, str. 1, ul. B. V. Spitsyna, Saratov, 410086

83, ul. Astrakhanskaya, Saratov, 410012



T. P. Sivak
Scientific Production Enterprise «Kontakt»
Russian Federation

Tatiana P. Sivak

1, str. 1, ul. B. V. Spitsyna, Saratov, 410086



E. Yu. Vasinkina
Scientific Production Enterprise «Kontakt»
Russian Federation

Ekaterina Yu. Vasinkina

1, str. 1, ul. B. V. Spitsyna, Saratov, 410086



References

1. Egorov V. N., Masalov V. L., Tokareva E. Yu., Altaev O. O. Status and perspectives of dielectric measurements / Almanakh Sovr. Metrol. 2019. No. 2(18). P. 37 – 45 [in Russian].

2. Egorov V. N. Resonant methods of dielectric research at microwave frequencies / Prib. Tekhn. Éksperim. 2007. Vol. 50. No. 2. P. 5 – 38 [in Russian].

3. Krylov V. P., Chirkov R. A., Zhitelev A. E., Zabezhailov M. O. Study of dielectric properties of destructive materials during heating / Industr. Lab. Mater. Diagn. 2024. Vol. 90. No. 5. P. 33 – 39 [in Russian]. DOI: 10.26896/1028-6861-2024-90-5-33-39

4. Arkhangelsky Yu. S. Reference book on microwave electrothermia. — Saratov: Nauchnaya kniga, 2011. — 560 p. [in Russian].

5. Egorov V. N., Masalov V. L., Kashchenko M. V., Tokareva E. Yu. Installation for dielectric measurements on microwave at heating up to 1800°C / Izv. Vuzov. 2013. Vol. 56. No. 8/2. P. 347 – 349 [in Russian].

6. Sivak A. S., Trigorly S. V., Kalganova S. G., et al. Investigation of dielectric properties of high-energy radio-absorbing composites / Industr. Lab. Mater. Diagn. 2025. Vol. 9. No. 4. P. 28 – 35 [in Russian]. DOI: 10.26896/1028-6861-2025-91-4-28-35

7. Sivak A. S., Kalganova S. G., Kadykova Yu. A., et al. Studies of dielectric properties of epoxy polymers / Proc. of the XX Int. Sci.- Pract. Conf. «New polymer composite materials». — Nalchik: Kabardino- Balkarskiy gos. univ. im. Kh. M. Berbekova, 2024. P. 279 [in Russian].

8. Eremenko V. T., Fisun A. P., Kokorin A. M. Fundamentals of construction of guiding systems and volume resonators: textbook. — Orel: OGU im. I. S. Turgeneva, 2017. — 228 p. [in Russian].

9. Shirman Ya. D. Radio waveguides and volume resonators. — Moscow: Svyazizdat, 1959. — 378 p. [in Russian].

10. Matizin A. K., Sokolov A. S. Electrodynamic model of a cylindrical resonator for measuring substrate parameters in the 2-sm wavelength range / Collection of works of the advanced engineering school: collection of scientific articles. — Kursk: Universitetskaya kniga, 2024. P. 78 – 83 [in Russian].

11. Kugushev A. M., Golubeva N. S., Mitrokhin V. N. Fundamentals of radio electronics. Electrodynamics and propagation of radio waves: textbook. — Moscow: MGTU im. N. E. Baumana, 2001. — 368 p. [in Russian].

12. Belykh A. D., Nassim S. K., Gagarin A. G. Methodology for measuring microwave parameters of dielectric plates / Élektron. Mikroélektron. SVCh. 2023. Vol. 1. P. 473 – 477 [in Russian].

13. Lozhkin L. D., Soldatov A. A. Modeling of measurement of electrophysical parameters of thin samples based on volume resonators in the design environment Microwave Studio / Mezhdunar. Zh. Prikl. Fundam. Issl. 2016. No. 12-1. P. 23 – 30 [in Russian].

14. Bogush V. A., Rodionova V. N., Tanana O. V. Modeling of parameters of coupling device of measuring resonator with microwave path / Vestn. PGU. 2022. No. 4. P. 43 – 48 [in Russian].

15. Lal S., Pant K. Study of the effect of loop inductance on the RF transmission line to cavity coupling coefficient / Rev. Sci. Instrum. 2016. Vol. 87. No. 8. P. 083308. DOI: 10.1063/1.4961578

16. Rodionova V., Slepyan G., Karpovich V., et al. Electromagnetic modelling of broadband coupling elements between high-Q resonators and single-mode waveguides / Proc. of the 11th Int. Conf. on Mathematical Methods in Electromagnetic Theory. — Kharkov, 2006. P. 382 – 386.

17. Karpovich V., Slepyan G., Skresanov V., et al. Grating coupling elements for high-Q resonators and rectangular waveguides of the millimeter wave band / J. Comm. Technol. Electronics. 2006. Vol. 12. P. 1227 – 1231.

18. Davidovich M. V., Kobetz A. K., Sayapin K. A. Excitation of a rectangular resonator through communication windows in the conveyor installation of microwave heating / Phys. Wave Proc. Radio Syst. 2022. Vol. 25. No. 4. P. 88 – 99. DOI: 10.18469/1810-3189.2022.25.4.88-99

19. Hippel A. R. Dielectrics and their applications. — Moscow: Gosenergoizdat, 1959. — 336 p. [Russian trnslation].

20. Achouri K., Caloz Ch. Electromagnetic Properties of Materials / Electromagn. Metasurf.: Theory Appl. 2021. P. 7 – 29. DOI: 10.1002/9781119525219.ch2


Review

For citations:


Sivak A.S., Kalganova S.G., Trigorly S.V., Kadykova J.A., Sakhadzhi G.V., Sivak T.P., Vasinkina E.Yu. Determination of dielectric characteristics of materials using a volumetric resonator. Industrial laboratory. Diagnostics of materials. 2025;91(12):38-47. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-12-38-47

Views: 38


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)