Research of thermal properties of nitro derivatives of polychlorobiphenyls
https://doi.org/10.26896/1028-6861-2025-91-12-48-55
Abstract
Polychlorinated biphenyls (PCBs), persistent organic pollutants, have become widespread during their production and use as dielectric fluids, due to transboundary transport via water, air, and the food chain. Nitro derivatives of PCBs — secondary pollutants — also pose a hazard to the environment and humans, but data on their thermal properties are insufficient. The aim of this study was to investigate the thermal properties of nitro derivatives of PCBs. Synthesized nitro derivatives of PCBs, which are components of technical mixtures of the brands «Trichlorbiphenyl» and «Sovol», were analyzed. Using simultaneous thermal analysis it was established that the studied mixtures of nitro derivatives are prone to sublimation rather than thermal decomposition. Onset temperatures of sublimation and enthalpies of sublimation were determined. It was found that as chlorine substituents accumulate in the biphenyl structure, the thermal stability of the nitro derivatives decreases. Furthermore, with increasing ambient temperature, polychlorinated nitroarenes can migrate into atmospheric boundary layers characterized by temperature inversion and increased pollution. The obtained results can be used to improve methods for monitoring nitro derivatives of polychlorinated biphenyls in environmental samples.
About the Authors
T. I. GorbunovaRussian Federation
Tatyana I. Gorbunova
22, ul. S. Kovalevskoy, Yekaterinburg, 620066
T. V. Kulikova
Russian Federation
Tatyana V. Kulikova
101, ul. Amundsena, Yekaterinburg, 620016
O. V. Ryzhkov
Russian Federation
Oleg V. Ryzhkov
22, ul. S. Kovalevskoy, Yekaterinburg, 620066
V. A. Bykov
Russian Federation
Victor A. Bykov
101, ul. Amundsena, Yekaterinburg, 620016
References
1. Cheng Z., Qiu X., Li A., et al. Heterogeneous reactions significantly contribute to the atmospheric formation of nitrated aromatic compounds during the haze episode in urban Beijing / Sci. Total Environ. 2024. Vol. 917. Art. 170612. DOI: 10.1016/j.scitotenv.2024.170612
2. Sarma H., Gogoi B., Guan C.-Y., Yu C.-P. Nitro-PAHs: occurrences, ecological consequences and remediation strategies for environmental restoration / Chemosphere. 2024. Vol. 356. Art. 141795. DOI: 10.1016/j.chemosphere.2024.141795
3. Gogoi B., Islam N., Sarma H. Biodegradation of nitro-PAHs by multi- trait PGPR strains isolated directly from rhizosphere soil / Microbe. 2025. Vol. 6. Art. 100263. DOI: 10.1016/j.microb.2025.100263
4. Gbeddy G., Egodawatta P., Akortia E., Goonetilleke A. Inherent and external factors influencing the distribution of PAHs, hydroxy-PAHs, carbonyl-PAHs and nitro-PAHs in urban road dust / Environ. Pollut. 2022. Vol. 308. Art. 119705. DOI: 10.1016/j.envpol.2022.119705
5. Tiwari J., Tarale P., Sivanesan S., Bafana A. Environmental persistence, hazard, and mitigation challenges of nitroaromatic compounds / Environ. Sci. Pollut. Res. 2019. Vol. 26. P. 28650 – 28667. DOI: 10.1007/s11356-019-06043-8
6. Nasir A., Fatima N., Begum R., et al. Inorganic catalytic systems for the reduction/degradation of 2,4-dinitro-phenol: Theoretical, practical and mechanistic aspects / Inorg. Chem. Comm. 2024. Vol. 170. Art. 113372. DOI: 10.1016/j.inoche.2024.113372
7. Yang X., Qi M., He Z., et al. Highly active nitrogen-doped biochar for catalytic reduction of 4-nitro-phenol: Kinetic, thermodynamic and mechanism investigation / Appl. Surf. Sci. 2024. Vol. 678. Art. 161113. DOI: 10.1016/j.apsusc.2024.161113
8. Tashkinova I. N. Research of environmental safety of a structurer based on construction and demolition waste containing amino- and nitroaromatic compounds / Vestn. Tekhnol. Univ. 2017. Vol. 20. No. 14. P. 139 – 142 [in Russian].
9. Ashikhmina T. Ya., Kolupaev A. V., Shirokhih A. A. Biotransformation of pesticides in terrestrial ecosystems (literature review) / Teor. Prikl. Ékol. 2010. No. 2. P. 4 – 12 [in Russian].
10. Huang H., Cai C., Yu S., et al. Emission behaviors of nitro- and oxy-polycyclic aromatic hydrocarbons during pyrolytic disposal of electronic wastes / Chemosphere. 2019. Vol. 222. P. 267 – 274. DOI: 10.1016/j.chemosphere.2019.01.125
11. Bandowe B., Meusel H. Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment: A review / Sci. Total Environ. 2017. Vols. 581 – 582. P. 237 – 257. DOI: 10.1016/j.scitotenv.2016.12.115
12. Yang X., Liu S., Xu Y., et al. Emission factors of polycyclic and nitro-polycyclic aromatic hydrocarbons from residential combustion of coal and crop residue pellets / Environ. Pollut. 2017. Vol. 231. P. 1265 – 1273. DOI: 10.1016/j.envpol.2017.08.087
13. Li X., Wang Y., Hu M., et al. Characterizing chemical composition and light absorption of nitroaromatic compounds in the winter of Beijing / Atmosph. Environ. 2020. Vol. 237. Art. 117712. DOI: 10.1016/j.atmosenv.2020.117712
14. Lin P., Bluvshtein N., Rudich Y., et al. Molecular chemistry of atmospheric brown carbon inferred from a nationwide biomass burning event / Environ. Sci. Technol. 2017. Vol. 51. P. 11561 – 11570. DOI: 10.1021/acs.est.7b02276
15. Lara S., Villanueva F., Cabañas B., et al. Determination of policyclic aromatic compounds, (PAH, nitro-PAH and oxy-PAH) in soot collected from a diesel engine operating with different fuels / Sci. Total Environ. 2023. Vol. 900. Art. 165755. DOI: 10.1016/j.scitotenv.2023.165755
16. de Oliveira Galvao M. F., de Oliveira Alves N., Ferreira P. A., et al. Biomass burning particles in the Brazilian Amazon region: Mutagenic effects of nitro and oxy-PAHs and assessment of health risks / Environ. Pollut. 2018. Vol. 233. P. 960 – 970. DOI: 10.1016/j.envpol.2017.09.068
17. Parry R., Nishino S., Spain J. Naturally-occurring nitro compounds / Nat. Prod. Rep. 2011. Vol. 28. P. 152 – 167. DOI: 10.1039/c0np00024h
18. Wang Y., Hu M., Wang Y., et al. The formation of nitro-aromatic compounds under high NOx and anthropogenic VOC conditions in urban Beijing, China / Atmosph. Chem. Phys. 2019. Vol. 19. P. 7649 – 665. DOI: 10.5194/acp-19-7649-2019
19. Huang L., Dong W., Hou H. Photochemical reaction of 2- chlorobiphenyl with N(III) (H2ONO+/HONO/NO2 –) in acidic environment studied by using co-linear laser flash photolysis / J. Photochem. Photobiol. A. 2013. Vol. 268. P. 44 – 49. DOI: 10.1016/j.jphotochem.2013.06.016
20. Fernandez P., van Drooge B., Arellano L., Grimalt J. Atmospheric deposition of semivolatile organic pollutants in European high mountains: Sources, settling and chemical degradation / Sci. Total Environ. 2021. Vol. 784. Art. 147099. DOI: 10.1016/j.scitotenv.2021.147099
21. Frumin G. T. Progress of chemistry and ecology. Part II. Polycyclic aromatic hydrocarbons and other pollutants / Russ. J. Gen. Chem. 2024. Vol. 94. No. 13. P. 3643 – 3649. DOI: 10.1134/s1070363224130267
22. Gorbunova T. I., Egorova D. O., Saloutin V. I., Chupakhin O. N. Aerobic bacterial degradation of polychlorinated biphenyls and their hydroxy and methoxy derivatives / Russ. Chem. Rev. 2024. Vol. 93. No. 11. Art. RCR5138. DOI: 10.59761/rcr5138
23. Gorbunova T. I., Saloutin V. I., Chupakhin O. N. Photolytic transformations of polychlorobiphenyls / Izv. Akad. Nauk. 2023. Vol. 72. No. 12. P. 2769 – 2790. DOI: 10.1007/s11172-023-4086-5
24. Zanaveskin L. N., Averyanov V. A. Polychlorobiphenyls: problems of the pollution of the environment and technological neutralisation methods / Russ. Chem. Rev. 1998. Vol. 67. No. 8. P. 713 – 724. DOI: 10.1070/rc1998v067n08abeh000412
25. Brodskiy E. S., Shelepchikov A. A., Kalinkevich G. A., Mir-Kadyrova E. Ya. On the determination of polychlorinated biphenyls in electrical insulating liquids / Industr. Lab. Mater. Diagn. 2017. Vol. 83. No. 11. P. 15 – 20 [in Russian]. DOI: 10.26896/1028-6861-2017-83-11-15-20
26. Mills III S., Thal D., Barney J. A summary of the 209 PCB congener nomenclature / Chemosphere. 2007. Vol. 68. P. 1603 – 1612. DOI: 10.1016/j.chemosphere.2007.03.052
27. Manzetti S. Ecotoxicity of polycyclic aromatic hydrocarbons, aromatic amines, and nitroarenes through molecular properties / Environ. Chem. Lett. 2012. Vol. 10. P. 349 – 361. DOI: 10.1007/s10311-012-0368-0
28. Arif M., Raza H., Tahir F., et al. Stabilized Ag nanoparticles loaded smart poly(chitosan-N-isopropylacrylamide-methacrylic acid) hybrid microgels for catalytic reduction of nitroarenes / J. Mol. Liq. 2024. Vol. 416. Art. 126516. DOI: 10.1016/j.molliq.2024.126516
29. Mullin M. D., Pochini C. M., McGrindle M. R., et al. High- resolution PCB analysis: synthesis and chromatographic properties of all 209 PCB congeners / Environ. Sci. Technol. 1984. Vol. 18. P. 468 – 476. DOI: 10.1021/es00124a014
30. Gorbunova T. I., Pervova M. G., Plotnikova K. A., et al. Features of polychlorinated biphenyls nitration / Russ. J. Gen. Chem. 2015. Vol. 85. No. 7. P. 1085 – 1091 [in Russian]. DOI: 10.1134/s1070363215070063
31. Gorbunova T. I., Pervova M. G., Saloutin V. I., Chupakhin O. N. Chemical functionalization of polychlorinated biphenyls: new achievements. — Yekaterinburg: UrFU, 2018. — 728 p. [in Russian].
32. Kulikova T. V., Maiorova A. V., Safronov A. P., et al. Pyrolysis of derivatives of technical mixtures of polychlorinated biphenyls / Dokl. Chem. 2019. Vol. 487. Part 2. P. 230 – 234. DOI: 10.1134/s0012500819080068
33. Maiorova A. V., Safronov A. P., Kulikova T. V., et al. Synthesis and thermal decomposition of alkoxy-, hydroxy-derivatives of Sovol polychlorbiphenyls technical mixture / J. Mater. Cycles Waste Manag. 2020. Vol. 22. P. 1552 – 1560. DOI: 10.1007/s10163-020-01044-z
34. Maiorova A. V., Kulikova T. V., Safronov A. P., et al. Thermal decomposition of polychlorobiphenyls and their derivatives / Russ. J. Appl. Chem. 2020. Vol. 93. No. 8. P. 1254 – 1260. DOI: 10.1134/s1070427220080194
35. Gorbunova T. I., Maiorova A. V., Kulikova T. V., et al. Thermo- oxidative degradation of hydroxypolychlorobiphenyls / Russ. J. Gen. Chem. 2021. Vol. 91. No. 8. P. 1540 – 1545. DOI: 10.1134/s1070363221080168
36. Kulikova T. Maiorova A., Gorbunova T., et al. Chemical functionalization and thermal destruction of persistent organic pollutants: polychlorinated biphenyls / Chem. Pap. 2022. Vol. 76. No. 6. P. 3899 – 3908. DOI: 0.1007/s11696-022-02137-9
37. Eiceman G. A., Rghei H. O. Presence of nitro-chlorinated dioxins on fly ash from municipal incinerators and from laboratory production through reactions between NO2 and T4CDD on fly ash / Chemosphere. 1984. Vol. 13. P. 1025 – 1032. DOI: 10.1016/0045-6535(84)90061-4
38. Bunce N. J., Diodato G. D., Safe S. H. Photolysis of nitropolychlorodibenzo-p-dioxins with base as potential methodology for the destruction of polychlorinated dibenzo-p-dioxins / Chemosphere. 1992. Vol. 24. P. 433 – 438. DOI: 10.1016/0045-6535(92)90418-q
39. Piterskikh I. A., Kirichenko V. E., Pervova M. G., Kandakova V. V. Development of a state standard sample of composition of the «Sovol» solution / Industr. Lab. Mater. Diagn. 2001. Vol. 67. No. 8. P. 63 – 66 [in Russian].
Review
For citations:
Gorbunova T.I., Kulikova T.V., Ryzhkov O.V., Bykov V.A. Research of thermal properties of nitro derivatives of polychlorobiphenyls. Industrial laboratory. Diagnostics of materials. 2025;91(12):48-55. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-12-48-55






























