Express control of aluminum alloys mechanical properties by instrumented indentation
https://doi.org/10.26896/1028-6861-2025-91-12-94-100
Abstract
A technique for determining the mechanical properties of aluminum alloys by instrumented indentation with a ball indenter was developed. The technique is based on the correlation between the maximum equal strain during specimen tension and the indentation strain hardening parameter in the plastic region. This made it possible to obtain a formula for calculating the ratio of yield strength to ultimate strength using the strain hardening parameter. The values of the loading ratio necessary to achieve the maximum Brinell hardness, which is proportional to the ultimate tensile strength with a constant conversion factor for the tested aluminum alloys, were established. The ultimate tensile strength value and the ratio of yield strength to ultimate tensile strength allow calculating the yield strength of the alloy, which is usually determined quite difficult by indentation according to other known methods. Given the unambiguous correlation between the ratio of yield strength to ultimate tensile strength and the strain hardening parameter, it is proposed to use it as a diagnostic parameter in the estimation the degree of fragility of structural materials. The higher this parameter, the more prone the material is to brittle fracture. The proposed method for determining mechanical properties by instrumented indentation is quite simple and easily responds to automation, which increases the productivity of monitoring the mechanical properties of aluminum alloys.
About the Authors
V. M. MatyuninRussian Federation
Vyacheslav M. Matyunin
14, Krasnokazarmennaya ul., Moscow, 111250
A. Yu. Marchenkov
Russian Federation
Artem Yu. Marchenkov
14, Krasnokazarmennaya ul., Moscow, 111250
R. Yu. Agafonov
Russian Federation
Roman Yu. Agafonov
14, Krasnokazarmennaya ul., Moscow, 111250
53, Aviamotornaya ul., Moscow, 111250
N. O. Tsvetkova
Russian Federation
Natalia O. Tsvetkova
14, Krasnokazarmennaya ul., Moscow, 111250
53, Aviamotornaya ul., Moscow, 111250
M. P. Petrova
Russian Federation
Marya P. Petrova
14, Krasnokazarmennaya ul., Moscow, 111250
5, 2-ya Baumanskaya ul., Moscow, 105005
G. B. Sviridov
Russian Federation
Georgy B. Sviridov
14, Krasnokazarmennaya ul., Moscow, 111250
References
1. Oreshko E., Yerasov V., Yakovlev N., Utkin D. Methods for determining the mechanical characteristics of materials using indentation / Aviation Mater. Technol. 2021. Vol. 62. No. 1. P. 104 – 118 [in Russian]. DOI: 10.18577/2713-0193-2021-0-1-104-118
2. Matlin M., Kazankin V., Kazankina E. Engineering solutions to contact problems in mechanical engineering. — Moscow: Innovative engineering, 2020. — 245 p. [in Russian].
3. Matyunin V. M. Indentation in the diagnosis of mechanical properties of structural materials. — Moscow: MPEI, 2015. — 288 p. [in Russian].
4. Useinov A., Reshetov V., Gusev A., Gladkih E. Optical spectroscopy combined in situ with instrumented indentation / J. Appl. Phys. 2022. Vol. 132. No. 12. DOI: 10.1063/5.0099166
5. Kim W., Lee J. J., Won J. H., Kwon D. Residual life-time evaluation method using instrumented indentation test / Key Eng. Mater. 2019. Vol. 810. P. 89 – 94. DOI: 10.4028/www.scientific.net/kem.810.89
6. Belosludtsev T., Kotolomov A., Nastich S., et al. Determination of mechanical properties of metal of annular welded joints and the base metal of pipes by instrumental indentation / Gas Industry. 2021. Vol. 823. No. 3. P. 118 – 128 [in Russian].
7. Lee J.-S., Jang J., Lee B.-W., et al. An instrumented indentation technique for estimating fracture toughness of ductile materials: a critical indentation energy model based on continuum damage mechanics / Acta Mater. 2006. Vol. 54. No. 4. P. 1101 – 1109. DOI: 10.1016/j.actamat.2005.10.033
8. Kren A., Machikhin A., Marchenkov A. Impact indentation of metals in the transition region from the elastic to plastic state / J. Mater. Sci. 2023. Vol. 58. No. 2. P. 961 – 970. DOI: 10.1007/s10853-022-08122- 7
9. Matyunin V., Marchenkov A. Instrumented indent diagnostics of physical, mechanical and service properties of materials. — Moscow: Infra-M, 2025. — 231 p. [in Russian].
10. Reshetov V., Krasnogorov I., Soloviev V., et al. Equipment for instrumented indentation — principles of operation and design features / Nanoindustry. 2022. Vol. 15. No. 7 – 8. P. 466 – 477 [in Russian]. DOI: 10.22184/1993-8578.2022.15.7-8.466.476
11. Ogar P., Shilin V., Ugryumova E. Determination of the tensile strain by indenting the sphere / Key Eng. Mater. 2022. Vol. 910. P. 1049 – 1055. DOI: 10.4028/p-90b7md
12. Matyunin V., Marchenkov A., Volkov P., et al. Conversion of the instrumented indentation diagrams of ball indenter into stress-strain curves for metallic structural materials / Industr. Lab. Mater. Diagn. 2022. Vol. 88. No. 2. P. 54 – 63 [in Russian]. DOI: 10.26896/1028-6861-2022-88-2-54-63
13. Oreshko E., Utkin D., Yerasov V., Lyakhov A. Methods of measuring hardness of materials / VIAM Proc. 2020. Vol. 85. No. 1. P. 101 – 117 [in Russian]. DOI: 10.18577/2307-6046-2020-0-1-101-117
14. Shveikin V., Kamantsev I., Pugacheva N. Application of microindentation of the evaluation of strain distribution over the section of extruded aluminum alloy bars / Diagn. Resource Mech. Mater. Struct. 2023. No. 6. P. 45 – 64 [in Russian]. DOI: 10.17804/2410-9908.2023.6.045-064
15. Konovalov V., Dubinsky S., Makarov A., Dotsenko A. Investigation of correlations between the mechanical properties of aviation materials / Aviation Mater. Technol. 2018. Vol. 51. No. 2. P. 40 – 46 [in Russian]. DOI: 10.18577/2071-9140-2018-0-2-40-46
16. Shibkov A., Zolotov A., Zheltov M., et al. Dynamics of deformation bands and fracture of aluminum-magnesium alloy AMg6 / Solid State Phys. 2011. Vol. 53. No. 10. P. 1873 – 1878 [in Russian].
17. Zuev L. B. Chernov – Luders and Portevin – Le Chatelier deformations in active deformable media of various nature / Appl. Mech. Techn. Phys. 2017. Vol. 58. No. 2. P. 164 – 171. DOI: 10.1134/s0021894417020171
18. Golovin Yu., Ivolgin V., Lebedkin M., Sergunin D. The area of existence of the Portevin – Le Chatelier effect under conditions of continuous indentation of Al – 2.7% Mg alloy at room temperature / Solid State Phys. 2004. No. 9. P. 1618 – 1620 [in Russian].
19. Matlin M., Mozgunova A., Kazankina E., Kazankin V. Methods of non- destructive testing of the strength properties of machine parts. — Moscow: Innovative Engineering, 2019. — 246 p. [in Russian].
20. Shabanov V. Resistance of metals to initial plastic deformation during indentation of a spherical indenter / Industr. Lab. Mater. Diagn. 2008. Vol. 74. No. 6. P. 63 – 69 [in Russian].
21. Matyunin V., Marchenkov A., Karimbekov M., et al. On the correlation of ultimate tensile stress with Brinell hardness for ferrous and non-ferrous structural materials / Met. Technol. 2021. No. 4. P. 34 – 41 [in Russian]. DOI: 10.31044/1684-2499-2021-0-4-34-41
22. Martens A., Heyn E. Vorrichtung zur Vereinfachten Pruffung der kugeldruckharte und die damiterzeielten Ergebnisse / Zeitsch. Ver. Deutscher Ing. 1908. Vol. 52. No. 43. P. 1719 – 1723.
23. Markovets M. Determination of mechanical properties of metals by hardness. — Moscow: Mashinostroenie, 1971. — 192 p. [in Russian].
24. Pavlina E. J., Van Tyne C. Correlation of yield strength and tensile strength with hardness for steels / J. Mater. Eng. Perform. 2008. Vol. 17. No. 6. P. 888 – 892. DOI: 10.1007/s11665-008-9225-5
25. Sandomirsky C. Generalized correlations dependence between the tensile strength and hardness of steels / Industr. Lab. Mater. Diagn. 2017. Vol. 83. No. 11. P. 52 – 57 [in Russian]. DOI: 10.26896/1028- 6861-2017-83-11-52-57
26. Matyunin V., Volkov P., Marchenkov A., et al. Scratch testing of surface layers of materials and coatings using acoustic emission / Met. Technol. 2023. No. 12. P. 17 – 23 [in Russian]. DOI: 10.31044/1684-2499-2023-0-12-17-23
Review
For citations:
Matyunin V.M., Marchenkov A.Yu., Agafonov R.Yu., Tsvetkova N.O., Petrova M.P., Sviridov G.B. Express control of aluminum alloys mechanical properties by instrumented indentation. Industrial laboratory. Diagnostics of materials. 2025;91(12):94-100. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-12-94-100






























