Tribodiagnostics of the initial stage of wear of detergent additives in in motor oil
https://doi.org/10.26896/1028-6861-2025-91-12-101-107
Abstract
Engine oil requires frequent replacement, so it is necessary to diagnose the mechanochemical process of wear (processing) of detergent additives. The paper presents the results of a study of the wear process of detergent additives and the natural aging of M-6z/12G1 engine oil after friction treatment and the appearance of wear particles at the initial stage of engine operation. Metallography and nuclear magnetic resonance methods were used in the tests. It was found that the relaxation time of protons of the engine oil under study decreases with an increase in the number of ferromagnetic particles in its colloidal solution, which are wear products. At the same time, as the number of wear particles in the oil increases, the size of the molecular complexes of detergent additives increases due to their coagulation (achieving a minimum energy state). The complexes envelop the wear particles and keep them suspended in a colloidal solution. It is shown that after mechanical friction for 0.5 and 3.0 h and an increase in the number of wear particles, 10-day exposure (with the engine not running) and subsequent shaking, the spin-spin relaxation time of the oil does not increase, but, on the contrary, is significantly reduced (by 1.6 and 2.8 times, respectively) due to oxidative processes occurring during the interaction with oxygen in the air (natural aging). After natural aging, oil that does not contain wear products loses its performance properties 2 – 3 times slower than its spent and aged counterparts. The results obtained can be used for tribodiagnostics of the initial wear stage of detergent additives in engine oil.
About the Authors
M. A. SkotnikovaRussian Federation
Margarita A. Skotnikova
29, Polytekhnicheskaya ul., St. Petersburg, 195251
D. A. Vinogradov
Russian Federation
Denis A. Vinogradov
29, Polytekhnicheskaya ul., St. Petersburg, 195251
G. V. Ivanova
Russian Federation
Galina V. Ivanova
29, Polytekhnicheskaya ul., St. Petersburg, 195251
G. V. Tsvetkova
Russian Federation
Galina V. Tsvetkova
29, Polytekhnicheskaya ul., St. Petersburg, 195251
Yu. V. Galyshev
Russian Federation
Yuri V. Galyshev
29, Polytekhnicheskaya ul., St. Petersburg, 195251
References
1. Mukhametzyanov I. Z., Kolchina G. Yu. History of creation and production of additives to motor oils / Istor. Pedagog. Estestvozn. 2021. Nos. 1 – 2. P. 49 – 52 [in Russian]. DOI: 10.24412/2226-2296-2021-1-2-49-52
2. Abakarov A. A., Igitov Sh. M. Determination of the engine oil change interval for gasoline engines according to the actual operating time / Vestn. SibADI. 2021. Vol. 18. No. 3(79). P. 274 – 285 [in Russian]. DOI: 10.26518/2071-7296-2021-18-3-274-285
3. Synashenko O. V., Sinyavsky N. Ya., Kostrikova N. A. Analysis of marine engine oils using dielectric permittivity relaxation / Izv. KGTU. 2023. No. 71. P. 131 – 144 [in Russian]. DOI: 10.46845/1997-3071-2023-71-131-144
4. Sinyavsky N. Ya., Mershiev I. G. Radiospectroscopic examination of used marine engine oils / Trenie Iznos. 2024. Vol. 45. No. 2. P. 118 – 128 [in Russian]. DOI: 10.32864/0202-4977-2024-45-2-118-128
5. Bin Du, Qian Liu, Yu Shi, et al. The effect of Fe3O4 nanoparticle size on electrical properties of nanofluid impregnated paper and trapping analysis / Molecules. 2020. No. 25. P. 3566. DOI: 10.3390/molecules25163566
6. Kremer F., Schönhals A. Broadband Dielectric Spectroscopy. — Berlin: Springer-Verlag Heidelberg GmbH, 2012. — 739 p. DOI: 10.1007/978-3-642-56120-7
7. Guan L., Feng X., Xiong G., et al. Application of dielectric spectroscopy for engine lubricating oil degradation monitoring / Sensors Actuators A. Phys. 2011. Vol. 168. No. 1. P. 22 – 29. DOI: 10.1016/j.sna.2011.03.033
8. Havran P., Cimbala R., Kurimský J., et al. Dielectric properties of electrical insulating liquids for high voltage electric devices in a time-varying electric field / Energies. 2022. No. 15. P. 391. DOI: 10.3390/en15010391
9. Ying-zhong Gong, Liang Guan, Li-guang Wang, et al. Dielectric submicroscopic phase characterization of engine oil dispersed in jet fuel based on on-line dielectric spectroscopy / Lubrication Sci. 2017. Vol. 29. No. 5. P. 335 – 354. DOI: 10.1002/ls.1371
10. Levi D., Stoynov Z., Vladikova D. Application of permittivity spectroscopy for screening of motor oils lubricating properties / Bulgar. Chem. Comm. 2017. Vol. 49. Special Issue. P. 254 – 259.
11. Sinyavsky N. Ya., Ivanov A. M., Kostrikova N. A. Analysis of wear particles in used marine engine oils / Mor. Intellekt. Tekhnol. 2021. No. 4(4). P. 44 – 48 [in Russian]. DOI: 10.37220/mit.2021.54.4.005
12. Sinyavsky N., Mershiev I. Marine engine oil diagnostics by means of NMR spectroscopy and relaxometry of protons / J. Eta Maritime Sci. 2022. Vol. 10(3). P. 195 – 201. DOI: 10.4274/jems.2022.04834
13. Korneva I. P., Sinyavsky N. Ya., Kostrikova N. A. Study of marine motor oils with wear products by optical methods / Mor. Intellekt. Tekhnol. 2022. No. 4(3). P. 72 – 78. DOI: 10.1088/1757- 899x/1181/1/012001
14. Guan L., Feng X., Xiong G. Engine lubricating oil classification by SAE grade and source based on dielectric spectroscopy data / Anal. Chem. Acta. 2008. Vol. 628. No. 1. P. 117 – 120. DOI: 10.1016/j.aca.2008.09.004
15. Kovalsky B. I., Vereshchagin V. I., Shram V. G., et al. Control of aging processes of motor oils by changing their optical properties / Industr. Lab. Mater. Diagn. 2019. Vol. 85. No. 11. P. 41 – 44 [in Russian]. DOI: 10.26896/1028-6861-2019-85-11-41-44
16. Kaminsky N. S., Gosteva P. R., Mikhailova O. G., et al. Investigation of residual properties of treated car engine oil / Mezhdunar. Zh. Perspekt. Issl. 2023. Vol. 13. No. 3. P. 115 – 129 [in Russian]. DOI: 10.12731/2227-930x-2023-13-3-115-129
17. Syundyukov I. S., Ivanov E. K., Skotnikova M. A., et al. Tribotechnical diagnostics of an internal combustion engine according to the condition of the oil / Key Eng. Mater. 2019. Vol. 822. P. 649 – 655. DOI: 10.4028/www.scientific.net/kem.822.649
18. Skotnikova M. A., Krylov N. A., Medvedeva V. V. Influence of the magnetic component of geomaterials on properties of friction pairs / Procedia Eng. 2016. Vol. 150. P. 612 – 617. DOI: 10.1016/j.proeng.2016.07.053
19. Skotnikova M. A., Breki A. D., Evsin M. G., et al. Influence of the concentration and particle size of rock powders on the anti-wear properties of oils / AIP Conference Proc. 2021. Vol. 2340. P. 060005. DOI: 10.1063/5.0047387
20. Skotnikova M. A., Ivanov E. K., Ivanova G. V., et al. Comparative studies of motor oils on upgraded friction machine / Lecture Notes in Mechanical Engineering. — Springer, 2022. DOI: 10.1007/978-3-030-91553-7
21. Davydov V. V., Velichko E. N., Karseev A. Yu. Nuclear magnetic minirelaxometer for monitoring the state of liquid and viscous media / Nauch.-Teknn. Vestn. Inf. Tekhnol. Mekh. Optiki. 2015. Vol. 15. No. 1. P. 115 – 121 [in Russian]. DOI: 10.17586/2226-1494-2015-15-1-115-121
22. Rudnick L. R. Lubricant Additives: chemistry and applications. — CRC Press Books, 2009. — 796 p.
Review
For citations:
Skotnikova M.A., Vinogradov D.A., Ivanova G.V., Tsvetkova G.V., Galyshev Yu.V. Tribodiagnostics of the initial stage of wear of detergent additives in in motor oil. Industrial laboratory. Diagnostics of materials. 2025;91(12):101-107. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-12-101-107






























