Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Tribodiagnostics of the initial stage of wear of detergent additives in in motor oil

https://doi.org/10.26896/1028-6861-2025-91-12-101-107

Abstract

Engine oil requires frequent replacement, so it is necessary to diagnose the mechanochemical process of wear (processing) of detergent additives. The paper presents the results of a study of the wear process of detergent additives and the natural aging of M-6z/12G1 engine oil after friction treatment and the appearance of wear particles at the initial stage of engine operation. Metallography and nuclear magnetic resonance methods were used in the tests. It was found that the relaxation time of protons of the engine oil under study decreases with an increase in the number of ferromagnetic particles in its colloidal solution, which are wear products. At the same time, as the number of wear particles in the oil increases, the size of the molecular complexes of detergent additives increases due to their coagulation (achieving a minimum energy state). The complexes envelop the wear particles and keep them suspended in a colloidal solution. It is shown that after mechanical friction for 0.5 and 3.0 h and an increase in the number of wear particles, 10-day exposure (with the engine not running) and subsequent shaking, the spin-spin relaxation time of the oil does not increase, but, on the contrary, is significantly reduced (by 1.6 and 2.8 times, respectively) due to oxidative processes occurring during the interaction with oxygen in the air (natural aging). After natural aging, oil that does not contain wear products loses its performance properties 2 – 3 times slower than its spent and aged counterparts. The results obtained can be used for tribodiagnostics of the initial wear stage of detergent additives in engine oil.

About the Authors

M. A. Skotnikova
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Margarita A. Skotnikova

29, Polytekhnicheskaya ul., St. Petersburg, 195251



D. A. Vinogradov
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Denis A. Vinogradov

29, Polytekhnicheskaya ul., St. Petersburg, 195251



G. V. Ivanova
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Galina V. Ivanova

29, Polytekhnicheskaya ul., St. Petersburg, 195251



G. V. Tsvetkova
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Galina V. Tsvetkova

29, Polytekhnicheskaya ul., St. Petersburg, 195251



Yu. V. Galyshev
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Yuri V. Galyshev

29, Polytekhnicheskaya ul., St. Petersburg, 195251



References

1. Mukhametzyanov I. Z., Kolchina G. Yu. History of creation and production of additives to motor oils / Istor. Pedagog. Estestvozn. 2021. Nos. 1 – 2. P. 49 – 52 [in Russian]. DOI: 10.24412/2226-2296-2021-1-2-49-52

2. Abakarov A. A., Igitov Sh. M. Determination of the engine oil change interval for gasoline engines according to the actual operating time / Vestn. SibADI. 2021. Vol. 18. No. 3(79). P. 274 – 285 [in Russian]. DOI: 10.26518/2071-7296-2021-18-3-274-285

3. Synashenko O. V., Sinyavsky N. Ya., Kostrikova N. A. Analysis of marine engine oils using dielectric permittivity relaxation / Izv. KGTU. 2023. No. 71. P. 131 – 144 [in Russian]. DOI: 10.46845/1997-3071-2023-71-131-144

4. Sinyavsky N. Ya., Mershiev I. G. Radiospectroscopic examination of used marine engine oils / Trenie Iznos. 2024. Vol. 45. No. 2. P. 118 – 128 [in Russian]. DOI: 10.32864/0202-4977-2024-45-2-118-128

5. Bin Du, Qian Liu, Yu Shi, et al. The effect of Fe3O4 nanoparticle size on electrical properties of nanofluid impregnated paper and trapping analysis / Molecules. 2020. No. 25. P. 3566. DOI: 10.3390/molecules25163566

6. Kremer F., Schönhals A. Broadband Dielectric Spectroscopy. — Berlin: Springer-Verlag Heidelberg GmbH, 2012. — 739 p. DOI: 10.1007/978-3-642-56120-7

7. Guan L., Feng X., Xiong G., et al. Application of dielectric spectroscopy for engine lubricating oil degradation monitoring / Sensors Actuators A. Phys. 2011. Vol. 168. No. 1. P. 22 – 29. DOI: 10.1016/j.sna.2011.03.033

8. Havran P., Cimbala R., Kurimský J., et al. Dielectric properties of electrical insulating liquids for high voltage electric devices in a time-varying electric field / Energies. 2022. No. 15. P. 391. DOI: 10.3390/en15010391

9. Ying-zhong Gong, Liang Guan, Li-guang Wang, et al. Dielectric submicroscopic phase characterization of engine oil dispersed in jet fuel based on on-line dielectric spectroscopy / Lubrication Sci. 2017. Vol. 29. No. 5. P. 335 – 354. DOI: 10.1002/ls.1371

10. Levi D., Stoynov Z., Vladikova D. Application of permittivity spectroscopy for screening of motor oils lubricating properties / Bulgar. Chem. Comm. 2017. Vol. 49. Special Issue. P. 254 – 259.

11. Sinyavsky N. Ya., Ivanov A. M., Kostrikova N. A. Analysis of wear particles in used marine engine oils / Mor. Intellekt. Tekhnol. 2021. No. 4(4). P. 44 – 48 [in Russian]. DOI: 10.37220/mit.2021.54.4.005

12. Sinyavsky N., Mershiev I. Marine engine oil diagnostics by means of NMR spectroscopy and relaxometry of protons / J. Eta Maritime Sci. 2022. Vol. 10(3). P. 195 – 201. DOI: 10.4274/jems.2022.04834

13. Korneva I. P., Sinyavsky N. Ya., Kostrikova N. A. Study of marine motor oils with wear products by optical methods / Mor. Intellekt. Tekhnol. 2022. No. 4(3). P. 72 – 78. DOI: 10.1088/1757- 899x/1181/1/012001

14. Guan L., Feng X., Xiong G. Engine lubricating oil classification by SAE grade and source based on dielectric spectroscopy data / Anal. Chem. Acta. 2008. Vol. 628. No. 1. P. 117 – 120. DOI: 10.1016/j.aca.2008.09.004

15. Kovalsky B. I., Vereshchagin V. I., Shram V. G., et al. Control of aging processes of motor oils by changing their optical properties / Industr. Lab. Mater. Diagn. 2019. Vol. 85. No. 11. P. 41 – 44 [in Russian]. DOI: 10.26896/1028-6861-2019-85-11-41-44

16. Kaminsky N. S., Gosteva P. R., Mikhailova O. G., et al. Investigation of residual properties of treated car engine oil / Mezhdunar. Zh. Perspekt. Issl. 2023. Vol. 13. No. 3. P. 115 – 129 [in Russian]. DOI: 10.12731/2227-930x-2023-13-3-115-129

17. Syundyukov I. S., Ivanov E. K., Skotnikova M. A., et al. Tribotechnical diagnostics of an internal combustion engine according to the condition of the oil / Key Eng. Mater. 2019. Vol. 822. P. 649 – 655. DOI: 10.4028/www.scientific.net/kem.822.649

18. Skotnikova M. A., Krylov N. A., Medvedeva V. V. Influence of the magnetic component of geomaterials on properties of friction pairs / Procedia Eng. 2016. Vol. 150. P. 612 – 617. DOI: 10.1016/j.proeng.2016.07.053

19. Skotnikova M. A., Breki A. D., Evsin M. G., et al. Influence of the concentration and particle size of rock powders on the anti-wear properties of oils / AIP Conference Proc. 2021. Vol. 2340. P. 060005. DOI: 10.1063/5.0047387

20. Skotnikova M. A., Ivanov E. K., Ivanova G. V., et al. Comparative studies of motor oils on upgraded friction machine / Lecture Notes in Mechanical Engineering. — Springer, 2022. DOI: 10.1007/978-3-030-91553-7

21. Davydov V. V., Velichko E. N., Karseev A. Yu. Nuclear magnetic minirelaxometer for monitoring the state of liquid and viscous media / Nauch.-Teknn. Vestn. Inf. Tekhnol. Mekh. Optiki. 2015. Vol. 15. No. 1. P. 115 – 121 [in Russian]. DOI: 10.17586/2226-1494-2015-15-1-115-121

22. Rudnick L. R. Lubricant Additives: chemistry and applications. — CRC Press Books, 2009. — 796 p.


Review

For citations:


Skotnikova M.A., Vinogradov D.A., Ivanova G.V., Tsvetkova G.V., Galyshev Yu.V. Tribodiagnostics of the initial stage of wear of detergent additives in in motor oil. Industrial laboratory. Diagnostics of materials. 2025;91(12):101-107. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-12-101-107

Views: 34


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)