Peroxidation of diclofenac under microdispersed electrospray conditions
https://doi.org/10.26896/1028-6861-2026-92-1-5-13
Abstract
This paper presents a new approach to studying diclofenac (DCL) peroxidation products and their reactivity, based on a combination of LDI target surface functionalization and modeling of the electro-Fenton reaction under microdispersed electrospray (MED) conditions. To ensure active interaction of diclofenac molecules with hydroxyl groups, peroxidation was carried in the presence of Cu+ ions, which promoted the formation of hydroxyl radicals. The peroxidation products and their adducts with glutathione were determined using SALDI/MALDI mass spectrometry. This study demonstrated that the use of a microdisperse electrospray system in combination with peroxidation enables the efficient isolation of diclofenac metabolites from the first and second stages. SALDI and MALDI analysis of diclofenac peroxidation products revealed new oxidative transformation products and glutathione adducts. The use of a microdisperse electrospray system significantly accelerated the modeling of oxidation processes compared to traditional methods, allowing the deposition and recording of the resulting products in the presence of titanium dioxide nanoparticles on the surface of an LDI target in parallel with oxidation reactions. In this case, the deposited particles serve as ion emitters for SALDI-MS analysis. The obtained results open new horizons for faster and more accurate analysis of drug biotransformation products. The development and implementation of this approach can significantly accelerate the process of assessing the toxicity of pharmaceuticals.
About the Authors
S. K. IlyushonokРоссия
Semyon K. Ilyushonok
31 – 33, lit. A, ul. Ivana Chernykh, St. Petersburg, 198095
6/2, korp. 93, Zavodskaya ul., Kuzmolovskoye, Vsevolozhsky mkr., Leningradskaya oblast’, 188663
N. G. Sukhodolov
Россия
Nikolay G. Sukhodolov
31 – 33, lit. A, ul. Ivana Chernykh, St. Petersburg, 198095
7 – 9, Universitetskaya nab., St. Petersburg, 190013
K. A. Krasnov
Россия
Konstantin A. Krasnov
1, ul. Bekhtereva, St. Petersburg, 192019
A. S. Gladchuk
Россия
Alexey S. Gladchuk
31 – 33, lit. A, ul. Ivana Chernykh, St. Petersburg, 198095
6/2, korp. 93, Zavodskaya ul., Kuzmolovskoye, Vsevolozhsky mkr., Leningradskaya oblast’, 188663
1, ul. Bekhtereva, St. Petersburg, 192019
A. N. Arsenyev
Россия
Alexander N. Arsenyev
31 – 33, lit. A, ul. Ivana Chernykh, St. Petersburg, 198095
S. I. Stolonogova
Россия
Svetlana I. Stolonogova
1, ul. Bekhtereva, St. Petersburg, 192019
Y. A. Sharapov
Россия
Yaroslav A. Sharapov
6/2, korp. 93, Zavodskaya ul., Kuzmolovskoye, Vsevolozhsky mkr., Leningradskaya oblast’, 188663
7 – 9, Universitetskaya nab., St. Petersburg, 190013
Yu. I. Khasin
Россия
Yuri I. Khasin
31 – 33, lit. A, ul. Ivana Chernykh, St. Petersburg, 198095
M. Z. Muradymov
Россия
Marat Z. Muradymov
31 – 33, lit. A, ul. Ivana Chernykh, St. Petersburg, 198095
V. N. Babakov
Россия
Vladimir N. Babakov
6/2, korp. 93, Zavodskaya ul., Kuzmolovskoye, Vsevolozhsky mkr., Leningradskaya oblast’, 188663
E. P. Podolskaya
Россия
Ekaterina P. Podolskaya
31 – 33, lit. A, ul. Ivana Chernykh, St. Petersburg, 198095
References
1. Khan A. H., Khan N. A., Ahmed S., et al. Application of advanced oxidation processes followed by different treatment technologies for hospital wastewater treatment / J. Clean. Prod. 2020. Vol. 269. 122411. DOI: 10.1016/j.jclepro.2020.122411
2. Collivignarelli M. C., Pedrazzani R., Sorlini S., et al. H2O2 based oxidation processes for the treatment of real high strength aqueous wastes / Sustainability. 2017. Vol. 9. No. 2. 244. DOI: 10.3390/su9020244
3. Zeng X., Liu J., Zhao J. Wet oxidation of an industrial high concentration pharmaceutical wastewater using hydrogen peroxide as an oxidant / J. Adv. Oxid. Technol. 2017. Vol. 20. No. 1. 20160179. DOI: 10.1515/jaots-2016-0179
4. Duarte C., Di Lorenzo T., Reboleira A. S. P. S. Environmental risk of diclofenac in European groundwaters and implications for environmental quality standards / Sci. Rep. 2024. Vol. 14. 20689. DOI: 10.1038/s41598-024-71747-y
5. Kretz-Rommel A., Boelsterli U. A. Mechanism of covalent adduct formation of diclofenac to rat hepatic microsomal proteins. Retention of the glucuronic acid moiety in the adduct / Drug Metab. Dispos. 1994. Vol. 22. P. 956 – 961. DOI: 10.1016/s0090-9556(25)08441-7
6. Gorbunov A. Yu., Krasnov K. A., Bardin A. A., et al. TiO2-modified MALDI target for in vitro modeling of the oxidative biotransformation of diclofenac / Mendeleev Commun. 2020. Vol. 30. No. 2. P. 220 – 222. DOI: 10.1016/j.mencom.2020.03.030
7. Liu X., Lv H., Guo Y., et al. Structure-based reactivity profiles of reactive metabolites with glutathione / Chem. Res. Toxicol. 2020. Vol. 33. No. 7. P. 1579 – 1593. DOI: 10.1021/acs.chemrestox.0c00081
8. Ilyushonok S. K., Krasnov K. A., Rose K. A., et al. Study of oxidation products of morphine and their reactivity by electrochemistry/(liquid chromatography)/mass spectrometry / J. Pharm. Biomed. Anal. 2026. Vol. 267. 117141. DOI: 10.1016/j.jpba.2025.117141
9. Requejo R., Hurd T. R., Costa N. J., Murphy M. P. Cysteine residues exposed on protein surfaces are the dominant intramitochondrial thiol and may protect against oxidative damage / FEBS J. 2010. Vol. 277. P. 1465 – 1480. DOI: 10.1111/j.1742-4658.2010.07576.x
10. Chan J. C. Y., Soh A. C. K., Kioh D. Y. Q., et al. Reactive metabolite-induced protein glutathionylation: a potentially novel mechanism underlying acetaminophen hepatotoxicity / Mol. Cell. Proteomics. 2018. Vol. 17. No. 10. P. 2034 – 2050. DOI: 10.1074/mcp.ra118.000875
11. McGill M. R., Lebofsky M., Norris H. R., et al. Plasma and liver acetaminophen-protein adduct levels in mice after acetaminophen treatment: dose-response, mechanisms, and clinical implications / Toxicol. Appl. Pharmacol. 2013. Vol. 269. No. 3. P. 240 – 249. DOI: 10.1016/j.taap.2013.03.026
12. Dhawle R., Mantzavinos D., Lianos P. UV/H2O2 degradation of diclofenac in a photocatalytic fuel cell / Appl. Catal. B. 2021. Vol. 299. 120706. DOI: 10.1016/j.apcatb.2021.120706
13. Coha M., Farinelli G., Tiraferri A., et al. Advanced oxidation processes in the removal of organic substances from produced water: Potential, configurations, and research needs / Chem. Eng. J. 2021. Vol. 414. 128668. DOI: 10.1016/j.cej.2021.128668
14. Villota N., Duoandicoechea U., Echevarria B., et al. Impact of hydrogen peroxide concentration on diclofenac degradation by UV/H2O2: kinetic modeling for water treatment applications / Separations. 2025. Vol. 12. No. 5. 125. DOI: 10.3390/separations12050125
15. Feng J., Chu C., Ma Z. Fenton and Fenton-like catalysts for electrochemical immunoassay: a mini review / Electrochem. Commun. 2021. Vol. 125. 106970. DOI: 10.1016/j.elecom.2021.106970
16. Zhu Y., Fan W., Feng W., et al. A critical review on metal complexes removal from water using methods based on Fenton-like reactions: analysis and comparison of methods and mechanisms / J. Hazard. Mater. 2021. Vol. 414. 25517. DOI: 10.1016/j.jhazmat.2021.125517
17. Garrido-Ramírez E. G., Marco J. F., Escalona N., Ureta-Zañartu M. S. Preparation and characterization of bimetallic Fe-Cu allophane nanoclays and their activity in the phenol oxidation by heterogeneous electro-Fenton reaction / Microporous Mesoporous Mater. 2016. Vol. 225. P. 303 – 311. DOI: 10.1016/j.micromeso.2016.01.013
18. Liu Y., Kong C., Liu L., et al. Progress in copper-based supported heterogeneous electro-Fenton catalysts / Chem. Eng. J. 2024. Vol. 486. 150217. DOI: 10.1016/j.cej.2024.150217
19. Brillas E., Sirés I., Oturan M. A. Electro-Fenton process and related electrochemical technologies for wastewater treatment: a review / Chem. Rev. 2009. Vol. 109. 6570. DOI: 10.1021/cr900136g
20. Al-Tawil E. A., Muradymov M. Z., Krasnov N. V. Electrospray of conductive solution under normal conditions in a wide range of volumetric flow rates / Nauch. Priborostr. 2017. Vol. 27. No. 2. P. 3 – 12 [in Russian]. DOI: 10.18358/np-27-2-211
21. Samokish V. A., Muradymov M. Z., Krasnov N. V. Electrospray ion source with a dynamic liquid flow splitter / Rapid Commun. Mass Spectrom. 2013. Vol. 27. No. 8. P. 904 – 908. DOI: 10.1002/rcm.6524
22. Ilyushonok S. K., Arsenyev A. N., Muradymov M. Z., et al. A modernized laboratory setup for the deposition of metal oxide nanoparticles onto a metallic substrate under drop-free electrospray mode with dynamic liquid flow division at atmospheric pressure / Tech. Phys. Lett. 2024. Vol. 50. No. 10. P. 47 – 50. DOI: 10.61011/tpl.2024.10.60117.19922
23. Ilyushonok S. K., Muradymov M. Z., Zhukov M. V., et al. Microdispersed electrospray mode in negative ionization as a method for sample deposition on a MALDI target / Nauch. Priborostr. 2024. Vol. 34. No. 4. P. 16 – 22 [in Russian].
Review
For citations:
Ilyushonok S.K., Sukhodolov N.G., Krasnov K.A., Gladchuk A.S., Arsenyev A.N., Stolonogova S.I., Sharapov Y.A., Khasin Yu.I., Muradymov M.Z., Babakov V.N., Podolskaya E.P. Peroxidation of diclofenac under microdispersed electrospray conditions. Industrial laboratory. Diagnostics of materials. 2026;92(1):5-13. (In Russ.) https://doi.org/10.26896/1028-6861-2026-92-1-5-13
JATS XML






























