Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Applicability of the portable X-ray fluorescence analyzer Olympus Vanta M for quantitative elemental analysis of archaeological ceramics

https://doi.org/10.26896/1028-6861-2026-92-1-24-34

Abstract

The applicability of the Olympus Vanta M X-ray fluorescence analyzer to obtain quantitative data on the elemental composition of archaeological ceramics was evaluated. Fragments of ceramic vessels from collections of 7 archaeological sites dating from the early to late Neolithic (~8.5 – 5 thousand years ago) were selected as a case study. To assess the trueness of the portable instrument’s analytical results, reference materials of sedimentary rocks with a close to the studied ceramics composition were used. For most of the analytes (Al, Si, P, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Rb, Sr, Y, Zr, Ba, Pb), linear correlation between the determined and certified concentrations was observed (R2 ≥ 0.90), which allowed us to conclude that the built-in (factory) calibration for these elements is reliable. Measurements of the outer and inner surfaces, as well as cut of the sherds without destruction, showed heterogeneity in the P, Ca, Mn, Cr, Ni, Cu, and Zn distribution within a ceramic fragment. Homogeneous distribution in different parts of the sherd was observed for Al, Si, K, Ti, Fe, Rb, Sr, Y, Zr, Ba, and Pb. For these elements, the relative discrepancies between the results obtained by the Olympus Vanta M analyzer for sherds and by the reference methods for powdered ceramics did not exceed 30%.

About the Authors

G. V. Pashkova
Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences; Irkutsk State University
Россия

Galina V. Pashkova

128, ul. Lermontova, Irkutsk, 664033

1, ul. Karla Marksa, Irkutsk, 664003

 



I. M. Berdnikov
Irkutsk State University
Россия

Ivan M. Berdnikov

1, ul. Karla Marksa, Irkutsk, 664003



V. M. Chubarov
Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences; Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences
Россия

Victor M. Chubarov

128, ul. Lermontova, Irkutsk, 664033

1A, ul. Favorskogo, Irkutsk, 664033



N. B. Sokolova
Irkutsk State University
Россия

Natalya B. Sokolova

1, ul. Karla Marksa, Irkutsk, 664003



I. S. Shegutov
Irkutsk State University
Россия

Ivan S. Shegutov

1, ul. Karla Marksa, Irkutsk, 664003



A. L. Finkelshtein
Irkutsk State University; Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences
Россия

Aleksandr L. Finkelshtein

1, ul. Karla Marksa, Irkutsk, 664003

1A, ul. Favorskogo, Irkutsk, 664033



References

1. Drozdov A. A., Andreev M. N., Ratnikov D. S., et al. Historical lead glass in museum collections: determination of the composition by a portable X-ray fluorescence analyzer / Industr. Lab. Mater. Diagn. 2021. Vol. 87. No. 6. P. 14 – 19 [in Russian]. DOI: 10.26896/1028-6861-2021-87-6-14-19

2. Drozdov A. A., Andreev M. N., Bychkov E. D., et al. Determination of the elemental composition of historical glasses using a portable X-ray fluorescence analyzer / Industr. Lab. Mater. Diagn. 2020. Vol. 86. No. 11. P. 13 – 19 [in Russian]. DOI: 10.26896/1028-6861-2020-86-11-13-19

3. Vishnevskiy A. V., Belousova N. E., Lavrenchuk A. V., et al. Portable X-ray analyzer: new possibilities for the diagnosis of stone raw materials and identification of their sources, assessment of the validity of raw units method application / Probl. Arkheol. Étnogr. Antropol. Sib. Sopred. Terr. 2023. Vol. 29. P. 90 – 96 [in Russian].

4. Berdnikov I. M., Shegutov I. S., Zolotarev D. P. Possibilities of non-destructive analysis of stone artifacts using the example of materials from the Late Paleolithic assemblages of the Southern Angara region and Upper Lena / Izv. Irkutsk. Gos. Univ. Ser. Geoarkheol. Étnol. Antropol. 2023. Vol. 45. P. 26 – 54 [in Russian]. DOI: 10.26516/2227-2380.2023.45.26

5. Berdnikov I. M. Portable X-ray fluorescence analysis in stone age archaeology: limitations and possibilities / Vestn. Omsk. Univ. Ser. Istor. Nauki. 2025. Vol. 12. No. 1(45). P. 151 – 158 [in Russian]. DOI: 10.24147/2312-1300.2025.12(1).151-158

6. Hunt A. M. W., Speakman R. J. Portable XRF analysis of archaeological sediments and ceramics / J. Archaeol. Sci. 2015. Vol. 53. P. 626 – 638. DOI: 10.1016/j.jas.2014.11.031

7. Holmqvist E. Handheld portable energy-dispersive X-ray fluorescence spectrometry (pXRF) / Hunt A. (ed.). The Oxford Handbook of Archaeological Ceramic Analysis. — Oxford: Oxford University Press, 2016. P. 363 – 381. DOI: 10.1093/oxfordhb/9780199681532.013.41

8. Chubarov V. M., Pashkova G. V., Maltsev A. S., et al. Possibilities and limitations of various X-ray fluorescence techniques in studying the chemical composition of ancient ceramics / J. Anal. Chem. 2024. Vol. 79. No. 3. P. 262 – 272. DOI: 10.1134/s1061934824030067

9. Frahm E. Protocols, pitfalls, and publishing for pXRF analyses: From «know how» to «best practices» / J. Archaeol. Sci. Rep. 2024. Vol. 60. 104831. DOI: 10.1016/j.jasrep.2024.104831

10. Marino M. D., Stoner W. D., Fargher L. F., et al. Comparing three sample preparation techniques for portable X-ray fluorescence: a case study of Coarse Orange ceramic jars, Veracruz, Mexico / J. Archaeol. Sci. Rep. 2022. Vol. 41. 103315. DOI: 10.1016/j.jasrep.2021.103315

11. Wawryk M. J., Hancock E. A. Portable XRF analysis in the Joe Lord and Perth Core libraries — methodology and case studies. — Perth: Geological Survey of Western Australia, Record, 2022. — 39 p.

12. Ivanov A. V., Demonterova E. I., Revenko A. G., et al. History and current state of analytical research at the Institute of the Earth’s Crust SB RAS: Centre for geodynamics and geochronology / Geodyn. Tectonophys. 2022. Vol. 13. 0582 [in Russian]. DOI: 10.5800/gt-2022-13-2-0582

13. Skuzovatov S. Yu., Belozerova O. Yu., Vasil’eva I. E., et al. Centre of isotopic and geochemical research (IGC SB RAS): current state of micro- and macroanalysis / Geodyn. Tectonophys. 2022. Vol. 13. 0585 [in Russian]. DOI: 10.5800/gt-2022-13-2-0585

14. Amosova A. A., Panteeva S. V., Tatarinov V. V., et al. X-ray fluorescence determination of major rock forming elements in small samples 50 and 110 mg / Analit. Kontrol’. 2015. Vol. 19. No. 2. P. 130 – 138. DOI: 10.15826/analitika.2015.19.2.009

15. Pashkova G. V., Mukhamedova M. M., Chubarov V. M., et al. Comparative analysis of X-ray fluorescence methods for elemental composition determination of the archaeological ceramics from low sample quantity / Analit. Kontrol’. 2021. Vol. 25. No. 1. P. 20 – 33 [in Russian]. DOI: 10.15826/analitika.2020.25.1.001

16. Pashkova G. V., Statkus M. A., Mukhamedova M. M., et al. A workflow for uncertainty assessment in elemental analysis of archaeological ceramics: a case study of neolithic coarse pottery from eastern Siberia / Heritage. 2023. Vol. 6(5). P. 4434 – 4450. DOI: 10.3390/heritage6050234


Review

For citations:


Pashkova G.V., Berdnikov I.M., Chubarov V.M., Sokolova N.B., Shegutov I.S., Finkelshtein A.L. Applicability of the portable X-ray fluorescence analyzer Olympus Vanta M for quantitative elemental analysis of archaeological ceramics. Industrial laboratory. Diagnostics of materials. 2026;92(1):24-34. (In Russ.) https://doi.org/10.26896/1028-6861-2026-92-1-24-34

Views: 21

JATS XML

ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)