Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Determination of the rate of carbon dioxide corrosion by the concentration of iron in the test environment

https://doi.org/10.26896/1028-6861-2026-92-1-35-41

Abstract

The main parameter used to characterize the resistance of materials to corrosion is the corrosion rate, which is estimated by the amount of deterioration over a certain time, while the average value is presented on an arbitrarily selected test base. However, current corrosion rate measurement methods do not adequately capture the kinetics of corrosion development, hindering the ability to predict the lifespan and serviceability of components. The results of determining the corrosion rate of carbon dioxide by the concentration of iron ions in the test environment are presented in the paper. During the corrosion tests, the concentration of iron transferred to the test environment was measured, and the rate of corrosion destruction was determined based on data on iron loss. The influence of test temperature, composition, and structural condition of pipe steels on the kinetics of carbon dioxide corrosion development was also analyzed. The dependences of the change of corrosion rate and the development of corrosion processes are given. It is shown that the average corrosion rates values during long-term tests correlate well with results from gravimetric and electrochemical methods. The results obtained and the proposed approach can be used to improve methods for determining and evaluating the dynamics of changes in the rate of corrosion during exposure to a corrosion environment.

About the Authors

D. S. Kazadaev
Tolyatti State University; «IT-Service» LLC
Россия

Dmitry S. Kazadaev

14, Belorusskaya ul., Tolyatti, 445020

1, ul. Naberezhnaya reki Samary, Samara, 443001



M. A. Vyboyshchik
Tolyatti State University
Россия

Mikhail A. Vyboyshchik

14, Belorusskaya ul., Tolyatti, 445020



V. A. Revyakin
«IT-Service» LLC
Россия

Victor A. Revyakin

1, ul. Naberezhnaya reki Samary, Samara, 443001



References

1. Markin A. N. On the prediction of carbon dioxide corrosion of steel in conditions of salt precipitation / Zashch. Met. 1995. No. 4. P. 394 – 400 [in Russian].

2. Artemenkov V. Yu., Koryakin A. Yu., Dikamov D. V., et al. Organization of corrosion monitoring at the facilities of the second section of the Achimov deposits of the Urengoy oil and gas condensate field / Gaz. Prom. 2017. No. 2. P. 74 – 78 [in Russian].

3. Kohl A., Nielsen R. Gas purification. — Houston: Gulf Pub. Co., Book Division, 1985. — 900 p.

4. Chen C. F., Lu M. X., Sun D. B. Effect of chromium on the pitting resistance of oil tube steel in a carbon dioxide corrosion system / Corrosion. 2005. Vol. 61. No. 6. P. 594 – 601. DOI: 10.5006/1.3278195

5. Efimov A. A. Local corrosion of carbon steel of oilfield equipment / Zashch. Met. 1995. Vol. 31. No. 6. P. 604 – 608 [in Russian].

6. Ioffe A. V., Vyboishchik M. A., Trifonova E. A., Suvorov P. V. The effect of chemical composition and structure on the resistance of oil line pipes to carbon dioxide corrosion / Metalloved. Term. Obrab. Met. 2010. No. 2. P. 9 – 14 [in Russian].

7. Ioffe A. V., Tetyueva T. V., Revyakin V. A., et al. Corrosion-mechanical destruction of pipe steels during operation / Metalloved. Term. Obrab. Met. 2012. No. 10. P. 22 – 28 [in Russian]. DOI: 10.18323/2073-5073-2019-2-6-17

8. Tetyueva T. V., Ioffe A. V., Vyboishchik M. A., et al. Effect of modification, microalloying and heat treatment on corrosion resistance and mechanical properties of 15KH5M steel / Metalloved. Term. Obrab. Met. 2012. No. 10. P. 15 – 22 [in Russian]. DOI: 10.18323/2073-5073-2018-3-31-37

9. Kahyarian A., Singer M., Nesic S. Modeling of uniform CO2 corrosion of mild steel in gas transportation systems / J. Nat. Gas Sci. Eng. 2016. No. 29. P. 530 – 549. DOI: 10.1016/j.jngse.2015.12.052

10. Markin A. N., Nizamov R. E. CO2 corrosion of oilfield equipment. — Moscow: VNIIOÉNG, 2003. — 188 p. [in Russian].

11. Gowers K. R., Millard S. G., Gill J. S., Gill R. P. Programmable linear polarisation meter for determination of corrosion rate of reinforcement in concrete structures / Br. Corros. J. 1994. Vol. 29. No. 1. P. 25 – 32. DOI: 10.1179/000705994798267

12. Vyboyschik M. A., Ioffe A. V. Development of steel resistant to carbon dioxide corrosion in oilfield environments / Perspective materials. — Tolyatti: TGU, 2017 [in Russian]. DOI: 10.18323/2073-5073-2019-2-6-17

13. Vagapov R. K., Zapevalov D. N., Ibatullin K. A. Study of corrosion of gas production infrastructure objects in the presence of CO2 by the methods of analytical control / Industr. Lab. Mater. Diagn. 2020. Vol. 86. No. 10. P. 23 – 30 [in Russian]. DOI: 10.26896/1028-6861-2020-86-10-23-30

14. Novikov V. F., Muratov K. R., Sokolov R. A., Ustinov V. P. Determination of the corrosion resistance of low alloyed steels by magnetic method / Industr. Lab. Mater. Diagn. 2020. Vol. 86. No. 5. P. 31 – 36 [in Russian]. DOI: 10.26896/1028-6861-2020-86-5-31-36

15. Karyakin A. Yu., Kobychev I. V., Kalinichenko I. V., Yusupov A. D. Conditions of carbon dioxide corrosion at production facilities of Achimov deposits, methods of control and forecasting / Gaz. Prom. 2017. No. 12. P. 84 – 89 [in Russian].

16. Markin A. N. Calculation of the maximum rate of local corrosion of pipelines of oilgathering systems according to the data of weight measurements obtained by means of corrosion control samples / Nefteprom. Delo. 2020. No. 12. P. 72 – 73 [in Russian]. DOI: 10.31615/j.corros.prot.2021.99.1-3

17. Vagapov R. K., Prokopenko A. Yu., Tomsky I. S. Assessment of the steel corrosion rate at the infrastructure facilities of hydrocarbon deposits as a function of the mineralization and temperature / Industr. Lab. Mater. Diagn. 2021. Vol. 87. No. 6. P. 41 – 44 [in Russian]. DOI: 10.26896/1028-6861-2021-87-6-41-44

18. Assessment of the rate of general corrosion in a model CO2 containing environment. — Samara: IT-Service, 2021. — 14 p. [in Russian].

19. Kondo K., Choi Y.-S., Nešić S. Effect of a small amount of Cr and Mo on aqueous CO2 corrosion of low-alloyed steel and formation of protective FeCO3 in near-saturation conditions / Corrosion. 2022. Vol. 79. No. 1. P. 97 – 110. DOI: 10.5006/4100

20. Pessu F., Barker R., Neville A. The influence of pH on localized corrosion behavior of X65 carbon steel in CO2-saturated brines / Corrosion. 2015. Vol. 71. No. 12. P. 1452 – 1466. DOI: 10.5006/1770

21. Vyboyschik M. A., Ioffe A. V., Fedotova A. V. Destruction of connecting parts of oilfield pipelines during operation / Neft. Khoz. 2022. No. 4. P. 90 – 96 [in Russian]. DOI: 10.18323/2073-5073-2020-3-7-18


Review

For citations:


Kazadaev D.S., Vyboyshchik M.A., Revyakin V.A. Determination of the rate of carbon dioxide corrosion by the concentration of iron in the test environment. Industrial laboratory. Diagnostics of materials. 2026;92(1):35-41. (In Russ.) https://doi.org/10.26896/1028-6861-2026-92-1-35-41

Views: 24

JATS XML

ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)