Study of Structure and mechanical properties of high-entropy coating of the Al – Ni – Co – Fe – Cr system formed by microplasma spraying
https://doi.org/10.26896/1028-6861-2026-92-1-42-48
Abstract
High-entropy alloys (HEAs) are a new class of materials for which powder metallurgy methods (coating deposition, additive manufacturing, free sintering) are the most promising for obtaining a homogeneous structure throughout the volume of large-sized products due to the complexity of their fabrication. This paper presents the results of a study on the structure and mechanical properties of an Al – Ni – Co – Fe – Cr HEA system using the nanoindentation method. The phase composition, morphology, and mechanical characteristics of an HEA coating formed by microplasma spraying were analyzed. The structural constituents of the coating were determined by X-ray diffractometry. The hardness within each structural constituent was evaluated under a load of 5 mN. X-ray structural analysis revealed the presence of solid solutions based on BCC and FCC lattices and an intermetallic compound with parameters close to those of AlNi. Furthermore, an additional oxide phase with a high content of Al and Cr, presumably of the spinel-type AB2O4 (A = Ni/Co/Fe, B = Al/Cr), was identified. Approximately 61% of the area is occupied by a structural constituent with a nanohardness of 10.2 GPa and a Young’s modulus of 166 GPa. The obtained results can be used in the development and improvement of wear-resistant, dispersion-strengthened microplasma coatings based on HEAs.
About the Authors
E. D. NesterovaРоссия
Ekaterina D. Nesterova
49, ul. Shpalernaya, St. Petersburg, 191015
T. I. Bobkova
Россия
Tatyana I. Bobkova
49, ul. Shpalernaya, St. Petersburg, 191015
N. V. Yakovleva
Россия
Nadezhda V. Yakovleva
49, ul. Shpalernaya, St. Petersburg, 191015
M. V. Staritsyn
Россия
Mikhail V. Staritsyn
49, ul. Shpalernaya, St. Petersburg, 191015
References
1. Yeh J. W., Chen S. K., Lin S. J., et al. Nanostructured high-entropy alloys with multiple principle elements: novel alloy design concepts and outcomes / Adv. Eng. Mater. 2004. Vol. 6. No. 8. P. 299 – 303. DOI: 10.1002/adem.200300567
2. Wang Y. P., Li B. S., Heng Z. F. Solid Solution or Intermetallics in a High Entropy Alloy / Adv. Eng. Mater. 2009. Vol. 11. No. 8. P. 641 – 644. DOI: 10.1002/adem.200900057
3. Owen L. R., Pickering E. J., Playford H. Y., et al. An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy / Acta Mater. 2017. Vol. 122. P. 11 – 18. DOI: 10.1016/j.actamat.2016.09.032
4. Cantor B. Multicomponent high-entropy Cantor alloys / Progr. Mater. Sci. 2020. Vol. 120. Art. 100754. DOI: 10.1016/j.pmatsci.2020.100754
5. Miracle D. B., Senkov O. N. A critical review of high-entropy alloys and related concepts / Acta Mater. 2017. Vol. 122. P. 448 – 511. DOI: 10.1016/j.actamat.2016.08.081
6. Ranganathan S. Alloyed pleasures: multimetallic cocktails / Curr. Sci. 2003. Vol. 85. P. 1404 – 1406.
7. Yeh J. W. Alloy design strategies and future trends in high-entropy alloys / J. Metals. 2013. Vol. 65. P. 1759 – 1771. DOI: 10.1007/s11837-013-0761-6
8. Wang L. M., Chen G. G., Yeh J. W., et al. The microstructure and strengthening mechanism of thermal spray coating NixCo0.6Fe0.2CrySizAlTi0.2 high-entropy alloys / Mater. Chem. Phys. 2011. Vol. 126. No. 3. P. 880 – 885. DOI: 10.1016/j.matchemphys.2010.12.022
9. Zhang H., Wu W., He Y., et al. Formation of core-shell structure in high-entropy alloy coating by laser cladding / Appl. Surf. Sci. 2015. Vol. 363. P. 543 – 547. DOI: 10.1016/j.apsusc.2015.12.059
10. Gao W., Chang C., Li G., et al. Study on the laser cladding of FeCrNi coating / Optik. 2019. Vol. 178. P. 950 – 957. DOI: 10.1016/j.ijleo.2018.10.062
11. Wang Y., Kuang S., Yu X., et al. Tribo-mechanical properties of CrNbTiMoZr high-entropy alloy film synthesized by direct current magnetron sputtering / Surf. Coat. Technol. 2020. Vol. 403. Art. 126374. DOI: 10.1016/j.surfcoat.2020.126374
12. Wu H., Zhang S., Wang Z., et al. New studies on wear and corrosion behavior of laser cladding FeNiCoCrMox high-entropy alloy coating: the role of Mo / Int. J. Refr. Met. Hard Mater. 2022. Vol. 102. Art. 105721. DOI: 10.1016/j.ijrmhm.2021.105721
13. Ye F., Jiao Z., Yan S., et al. Microbeam plasma arc remanufacturing: effects of Al on microstructure, wear resistance, corrosion resistance and high temperature oxidation resistance of AlxCoCrFeMnNi high-entropy alloy cladding layer / Vacuum. 2020. Vol. 174. Art. 109178. DOI: 10.1016/j.vacuum.2020.109178
14. Zhang G., Liu H., Tian X., et al. Microstructure and properties of AlCoCrFeNiSi high-entropy alloy coating on AISI304 stainless steel by laser cladding / Journal of Materials Engineering and Performance. 2020. Vol. 29. No. 5. P. 1 – 11. DOI: 10.1007/s11665-020-04586-3
15. Gromov V. E., Konovalov S. V., Peregudov O. A., et al. Coatings from high-entropy alloys: state of the problem and development prospects / Izv. Vuzov. Cher. Met. 2022. No. 65(10). P. 683 – 692 [in Russian]. DOI: 10.17073/0368-0797-2022-10-683-692
16. Korchuganov A., Kryzhevich D., Zolnikov K. Fracture of Fe95Ni5 alloys with gradient-grained structure under uniaxial tension / Metals. 2023. Vol. 13. No. 7. Art. 1308. DOI: 10.3390/met13071308
17. Pramanik S., Kar K. Coating technologies for metal matrix composites / Encycl. Mater.: Composites. 2021. Vol. 1. No. 1. P. 454 – 473. DOI: 10.1016/b978-0-12-803581-8.11810-7
18. Nakonechnyi S., Soloviova T., Yurkova A., et al. Cold sprayed AlNiCoFeCr – TiB2 metal matrix composite coatings / Vacuum. 2023. Vol. 213. Art. 112144. DOI: 10.1016/j.vacuum.2023.112144
19. Hache M. J. R., Changjun Cheng, Yu Zou. Nanostructured high-entropy materials / J. Mater. Res. 2020. Vol. 35. No. 8. P. 1 – 25. DOI: 10.1557/jmr.2020.33
20. Ardeshir M., Yousefpour M., Nourbakhsh M., et al. Microstructure and corrosion resistance of high entropy alloy (AlNiCoCrFe) coatings prepared by TIG process / Heliyon. 2024. Vol. 10. No. 24. Art. 41062. DOI: 10.1016/j.heliyon.2024.e41062
21. Kanaev A. T., Ramazanova Z. M., Biizhanov S. K. Study of plasma-hardened wheel steel using nanoindentation / Industr. Lab. Mater. Diagn. 2020. Vol. 86. No. 4. P. 56 – 60 [in Russian]. DOI: 10.26896/1028-6861-2017-83-11-58-61
22. Matyunin V. M., Marchenkov A. Y., Stasenko N. A. Determination of the specific energy of elastoplastic strain required for crack formation in hardening coatings upon indentation / Industr. Lab. Mater. Diagn. 2017. Vol. 83. No. 11. P. 58 – 61 [in Russian]. DOI: 10.26896/1028-6861-2020-86-4-56-60
23. Li C., Li J., Zhao M., et al. Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys / J. Alloys Compounds. 2010. Vol. 504. P. 515 – 518. DOI: 10.1016/j.jallcom.2010.03.111
24. Meghwal A., Anupam A., Luzin B., et al. Multiscale mechanical performance and corrosion behaviour of plasma sprayed AlCoCrFeNi high-entropy alloy coatings / J. Alloys Compounds. 2021. Vol. 854. Art. 157140. DOI: 10.1016/j.jallcom.2020.157140
Review
For citations:
Nesterova E.D., Bobkova T.I., Yakovleva N.V., Staritsyn M.V. Study of Structure and mechanical properties of high-entropy coating of the Al – Ni – Co – Fe – Cr system formed by microplasma spraying. Industrial laboratory. Diagnostics of materials. 2026;92(1):42-48. (In Russ.) https://doi.org/10.26896/1028-6861-2026-92-1-42-48
JATS XML






























