Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Research of the stress state in the delamination zone of a laminated steel plate

https://doi.org/10.26896/1028-6861-2026-92-1-70-76

Abstract

Many factors (the method of manufacturing the material, the number and thickness of the layers, the pattern of alternating layers) influence on forming and destruction of multilayer materials. The purpose of the work is to evaluate the effect of the thickness of the torn part on the total thickness of the sample on the stress-strain state at the interlayer boundaries of a layered metal composite material based on 09G2S and 12Kh18N10T steels. The debonding process is implemented using finite element modeling in conjunction with the virtual crack closure (VCCT) method. A series of computational experiments has been implemented with varying the critical rate of elastic energy release under conditions of separation of two samples with different ratios of the thickness of the torn part to the total thickness of the sample. As a result of a series of computational experiments, the stress state along the junction boundary was determined. The stratification will begin when the criterion for the critical rate of release of elastic energy GIS is below 40 kJ/m2. The stratification begins to form in different places, depending on the ratio of the thickness of the torn part to the total thickness of the samples under study. The deviation of the maximum main stress at the crack tip from the direction of application of the load is 10°. It is more preferable to use a sample where the ratio of the thickness of the torn part to the total thickness of the sample is less. The results obtained can be used in selecting the geometry of the sample for stratification tests and evaluating the quality of the joint layers.

About the Authors

D. I. Kryuchkov
Institute of Engineering Science, RAS, Ural Branch
Россия

Denis I. Kryuchkov

34, Komsomolskaya ul., Yekaterinburg



Ivan S. Kamantsev I. S.
Institute of Engineering Science, RAS, Ural Branch
Россия

Ivan S. Kamantsev

34, Komsomolskaya ul., Yekaterinburg



V. P. Shveikin
Institute of Engineering Science, RAS, Ural Branch
Россия

Vladimir P. Shveikin

34, Komsomolskaya ul., Yekaterinburg



References

1. Kachanov L. M. Fundamentals of fracture mechanics. — Moscow: Nauka, 1974. — 312 p. [in Russian].

2. Smirnov S. V., Myasnikova M. V., Igumnov A. S. Determination of the local shear strength of a layered metal composite material with a ductile interlayer after thermocycling / Diagn. Resource Mech. Mater. Struct. 2016. Issue 4. P. 46 – 56. DOI: 10.17804/2410-9908.2016.4.046-056

3. Smirnov S. V., Veretennikova I. A. Comparative evaluation of metal damage on the free lateral surface of single-layer and three-layer strips under rolling / Diagn. Resource Mech. Mater. Struct. 2015. Issue 4. P. 6 – 15. DOI: 10.17804/2410-9908.2015.4.006-017

4. Reiner J., Vaziri R. Structural analysis of composites with finite element codes: an overview of commonly used computational methods / Comprehensive composite materials II. — Elsevier, 2018. P. 61 – 84. DOI: 10.1016/b978-0-12-803581-8.10050-5

5. Krueger R. The virtual crack closure technique for modeling interlaminar failure and delamination in advanced composite materials / Woodhead Publishing Series in Composites Science and Engineering, Numerical Modelling of Failure in Advanced Composite Materials. — Woodhead Publishing, 2015. P. 3 – 53. DOI: 10.1016/b978-0-08-100332-9.00001-3

6. Valvo P. S. A physically consistent virtual crack closure technique for I/II/III mixed-mode fracture problems / Proc. Mater. Sci. 2014. Vol. 3. P. 1983 – 1987. DOI: 10.1016/j.mspro.2014.06.319

7. Liu P.., Hou S., Chu J., et al. Finite element analysis of post buckling and delamination of composite laminates using virtual crack closure technique / Composite Struct. 2011. Vol. 93. Issue 5. P. 1549 – 1560. DOI: 10.1016/j.compstruct.2010.12.006

8. Xie D., Biggers S. Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part I: formulation and validation / Eng. Fract. Mech. 2006. Vol. 73. Issue 6. P. 771 – 785. DOI: 10.1016/j.engfracmech.2005.07.013

9. Harper P. W., Hallett S. R. Cohesive zone length in numerical simulations of composite delamination / Eng. Fract. Mech. 2008. Vol. 75. P. 4774 – 4792. DOI: 10.1016/j.engfracmech.2008.06.004

10. Azimi M., Mirjavadi S., Asli S., Hamouda A. Fracture analysis of a special Cracked Lap Shear (CLS) specimen with utilization of Virtual Crack Closure Technique (VCCT) by finite element methods / J. Fail. Anal. Prevention. 2017. Vol. 17. Issue 2. P. 304 – 314. DOI: 10.1007/s11668-017-0243-1

11. Li Y., Dobryanskiy V., Orekhov A. Modelling of crack development processes in composite elements based on virtual crack closure technique and cohesive zone model / Periód. Tchê Quím. 2020. Vol. 17. No. 35. P. 591 – 598.

12. Perov S. N., Chernyakin S. A. Research the applicability of finite element method for estimation the parameters of fracture mechanics of constructive elements from composites / Izv. Samar. NTs RAN. 2013. Vol. 15. No. 4(2). P. 480 – 483 [in Russian].

13. Chernyakin S. A., Skvortsov Yu. V. Analysis of the growth of stratifications in composite structures / Vestn. SibGAU. 2014. No. 4(56). P. 249 – 255 [in Russian].

14. Glushkov S. V., Skvortsov Yu. V., Perov S. N., Chernyakin S. A. Finite element analysis of panels with surface cracks / AIP Conference Proceedings. — La Rochelle, 2017. DOI: 10.1063/1.4972651

15. Marjanović M., Meschke G., Vuksanović D. A finite element model for propagating delamination in laminated composite plates based on the Virtual Crack Closure method / Composite Struct. 2016. Vol. 150. P. 8 – 19. DOI: 10.1016/j.compstruct.2016.04.044

16. Liu P. F., Islam M. M. A nonlinear cohesive model for mixed-mode delamination of composite laminates / Composite Struct. 2013. Vol. 106. P. 47 – 56. DOI: 10.1016/j.compstruct.2013.05.049

17. Glushkov S. V., Perov S. N., Skvortsov Yu. V. Normalization of crack-like defects in pipeline walls / Industr. Lab. Mater. Diagn. 2012. Vol. 78. No. 3. P. 54 – 56 [in Russian].

18. Bonhomme J., Argüelles A., Viña J., Viña I. Numerical and experimental validation of computational models for mode I composite fracture failure / Comput. Mater. Sci. 2009. Vol. 45. P. 993 – 998. DOI: 10.1016/j.commatsci.2009.01.005

19. Shokrieh M., Rajabpour-Shirazi H., Heidari-Rarani M., Haghpanahi M. Simulation of mode I delamination propagation in multidirectional composites with R-curve effects using VCCT method / Comput. Mater. Sci. 2012. Vol. 65. P. 66 – 73. DOI: 10.1016/j.commatsci.2012.06.025

20. Martinez X., Rastellini F., Oller S., et al. Computationally optimized formulation for the simulation of composite materials and delamination failures / Composites. Part B. Eng. 2011. Vol. 42. Issue 2. P. 134 – 144. DOI: 10.1016/j.compositesb.2010.09.013

21. Zehnder A. T. Fracture mechanics. — London: Springer, 2012.

22. Moskvichev E. V., Lepikhin A. M. Structural and mechanical heterogeneity and fracture toughness of welding joints of steel 09G2S and 12Kh18N10T / Industr. Lab. Mater. Diagn. 2013. Vol. 79. No. 6. P. 50 – 54 [in Russian].


Review

For citations:


Kryuchkov D.I., S. I.I., Shveikin V.P. Research of the stress state in the delamination zone of a laminated steel plate. Industrial laboratory. Diagnostics of materials. 2026;92(1):70-76. (In Russ.) https://doi.org/10.26896/1028-6861-2026-92-1-70-76

Views: 23

JATS XML

ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)