Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Electrical Properties of the High-Quality Synthetic Boron-Doped Single Crystal Diamonds and Schottky Barrier Diodes on Their Base

Abstract

Temperature dependencies of the resistivity and Hall coefficient in high-quality boron-doped synthetic diamond single crystals grown by HPHT method with different boron content are investigated. Acceptor concentration is varied in the range of 2 X 1015 -3 x 1017 cm3 in (001) cut plates via changing the boron content in the growth mixture in the range of 0.0004 - 0.04 at.%. Thin rectangular plates with uniform boron content and free of extended structural defects are subjected to laser cutting after x-ray topography and UV luminescence mapping. Donor and acceptor densities in each sample are calculated from the data of Hall effect and current-voltage characteristics. The concentrations correlate with the boron content in the growth mixture. The minimum donors to acceptors compensation ratio less than 1% is observed in crystals grown in the growth mixture containing 0.002 at.% boron, while any change in the boron content increases the ratio. Samples grown at aforementioned boron concentration exhibit the maximum charge carrier mobility: 2200 cm2/(V · sec) at T = 300 K and 7200 cm2/(V · sec) at T = 180 K. The phonon scattering of holes dominates over the entire temperature range 180- 800 K, and scattering on the point defects, such as neutral and ionized impurity atoms is negligible. The diamond crystals grown from a mixture containing from 0.0005 to 0.002 at.% boron exhibiting excellent quality and lattice scattering mechanism can be considered reference semiconductor materials.

About the Authors

V. S. Bormashov
Технологический институт сверхтвердых и новых углеродных материалов
Russian Federation


S. A. Tarelkin
Технологический институт сверхтвердых и новых углеродных материалов; Московский физико-технический институт
Russian Federation


S. G. Buga
Технологический институт сверхтвердых и новых углеродных материалов; Московский физико-технический институт
Russian Federation


A. P. Volkov
Технологический институт сверхтвердых и новых углеродных материалов
Russian Federation


A. V. Golovanov
Технологический институт сверхтвердых и новых углеродных материалов; Московский физико-технический институт
Russian Federation


M. S. Kuznetsov
Технологический институт сверхтвердых и новых углеродных материалов
Russian Federation


N. V. Kornilov
Технологический институт сверхтвердых и новых углеродных материалов
Russian Federation


D. V. Teteruk
Технологический институт сверхтвердых и новых углеродных материалов
Russian Federation


S. A. Terentiev
Технологический институт сверхтвердых и новых углеродных материалов
Russian Federation


V. D. Blank
Технологический институт сверхтвердых и новых углеродных материалов; Московский физико-технический институт
Russian Federation


References

1. Polyakov S. N., Denisov V. N., Kuzmin N. V., Kuznetsov M. S., Martyushov S. Y., Nosukhin S. A., Terentiev S. A., Blank V. D. Characterization of top-quality type Ila synthetic diamonds for new X-ray optics / Diamond Rel. Mater. 2011. Vol. 20. P. 726 - 728.

2. Feve J.-P. M., Shortoff K. E., Bohn M. J., Brasseur J. K. High average power diamond Raman laser / Optics Express. 2011. Vol. 19. P. 913.

3. Shvyd’ko Y., Stoupin S., Blank V., Terentyev S. Near-100 % Bragg reflectivity of X-rays / Nat. Photon. 2011. Vol. 5. P. 539 - 542.

4. Blank V. D., Bormashov V. S., Tarelkin S. A., Buga S. G., Kuznetsov M. S., Teteruk D. V., Kornilov N. V., Terentiev S. A., Volkov A. P. Power high-voltage and fast response Schottky barrier diamond diodes / Diamond Rel. Mater. 2015. Vol. 57. P. 32 - 36.

5. Tarelkin S., Bormashov V., Buga S., Volkov A., Teteruk D., Kornilov N., Kuznetsov M., Terentiev S., Golovanov A., Blank V. Power diamond vertical Schottky barrier diode with 10 A forward current / Phys. Status Solidi A. 2015. Vol. 212. P. 2621.

6. Polyakov A., Smirnov N., Tarelkin S., Govorkov A., Bormashov V., Kuznetsov M., Teteruk D., Buga S., Kornilov N., Lee I.-H. Electrical Properties of Diamond Platinum Vertical Schottky Barrier Diodes / Materials Today: Proceedings. 2016. Vol. 3. P. S159 - S164.

7. Tapper R. J. Diamond detectors in particle physics / Reports on Progress in Physics. 2000. Vol. 63. P. 1273 - 1316.

8. Bruzzi M., Bucciolini M., Nava F., Pini S., Russo S. Advanced materials in radiation dosimetry / Nucl. Instr. Meth. Phys. Res. Sect. A. Accelerators, Spectrometers, Detectors and Associated Equipment. 2002. Vol. 485. P. 172 - 177.

9. Bachmair F., Bäni L., Bergonzo P., Caylar B., Forcolin G., Haughton I., Hits D., Kagan H., Kass R., Li L., Oh A., Phan S., Pomorski M., Smith D. S., Tyzhnevyi V., Wallny R., Whitehead D. A 3D diamond detector for particle tracking / Nucl. Instr. Meth. Phys. Res. Sect. A. Accelerators, Spectrometers, Detectors and Associated Equipment. 2015. Vol. 786. P. 97 - 104.

10. Amosov V. N., Azizov E. A., Blank V. D., Gvozdeva N. M., Kornilov N. V., Krasilnikov A. V., Kuznetsov M. S., Meshchaninov S. A., Nosukhin S. A., Rodionov N. B., Terent’ev S. A. Development of ionizing radiation detectors based on synthetic diamond material for the nuclear power industry / Instr. Exp. Techn. 2010. Vol. 53. P. 196 - 203.

11. Bormashov V., Troschiev S., Volkov A., Tarelkin S., Korostylev E., Golovanov A., Kuznetsov M., Teteruk D., Kornilov N., Terentiev S., Buga S., Blank V. Development of nuclear microbattery prototype based on Schottky barrier diamond diodes: Development of nuclear micro-battery prototype / Phys. Status Solidi A. 2015. Vol. 212. P. 2621.

12. Delfaure C., Pomorski M., J. de Sanoit, Bergonzo P., Saada S. Single crystal CVD diamond membranes for betavoltaic cells / Appl. Phys. Lett. 2016. Vol. 108. P. 252105.

13. Thonke K. The boron acceptor in diamond / Semiconductor Sci. Technol. 2003. Vol. 18. P. S20 - S26.

14. Pernot J., Volpe P. N., Omnès F., Muret P., Teraji T. Hall hole mobility in boron-doped homoepitaxial diamond / Phys. Rev. B. 2010. Vol. 81. P. 205203.

15. Prikhodko D., Tarelkin S., Bormashov V., Golovanov A., Kuznetsov M., Teteruk D., Volkov A., Buga S. Thermal conductivity of synthetic boron-doped single-crystal HPHT diamond from 20 to 400 K / MRS Comm. 2016. P. 1 - 6.

16. Wentorf R. H. Some studies of diamond growth rates / J. Phys. Chem. 1971. Vol. 75. P. 1833 - 1837.

17. Achard J., Tallaire A., Sussmann R., Silva F., Gicquel A. The control of growth parameters in the synthesis of high-quality single crystalline diamond by CVD / J. Crystal Growth. 2005. Vol. 284. P. 396 - 405.

18. Barjon J., Chikoidze E., Jomard F., Dumont Y., Pinault-Thaury M.-A., Issaoui R., Brinza O., Achard J., Silva F. Homoepitaxial boron-doped diamond with very low compensation / Phys. Status Solidi A. 2012. Vol. 209. P. 1750 - 1753.

19. Wentorf R. H., Bovenkerk H. P. Preparation of Semiconducting Diamonds / J. Chem. Phys. 1962. Vol. 36. P. 1987.

20. Blank V. D., Kuznetsov M. S., Nosukhin S. A., Terentiev S. A., Denisov V. N. The influence of crystallization temperature and boron concentration in growth environment on its distribution in growth sectors of type IIb diamond / Diamond Rel. Mater. 2007. Vol. 16. P. 800 - 804.

21. Van der Pauw L. J. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Repts. 1958. N 13. P. 1 - 9.

22. Schroder D. K. Semiconductor material and device characterization. - Piscataway, NJ: IEEE Press - Wiley, 2006.

23. Mamin R., Inushima T. Conductivity in boron-doped diamond / Phys. Rev. B. 2001. Vol. 63.

24. Denisov V. N., Mavrin B. N., Polyakov S. N., Kuznetsov M. S., Terentiev S. A., Blank V. D. First observation of electronic structure of the even parity boron acceptor states in diamond / Phys. Lett. A. 2012. Vol. 376. P. 2812-2815.


Review

For citations:


Bormashov V.S., Tarelkin S.A., Buga S.G., Volkov A.P., Golovanov A.V., Kuznetsov M.S., Kornilov N.V., Teteruk D.V., Terentiev S.A., Blank V.D. Electrical Properties of the High-Quality Synthetic Boron-Doped Single Crystal Diamonds and Schottky Barrier Diodes on Their Base. Industrial laboratory. Diagnostics of materials. 2017;83(1 ч.I):36-42. (In Russ.)

Views: 775


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)