Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Dielectric and Piezoelectric Properties of Composite Copolymer Poly(vinylidene fluoride-trifluoroethylene) with Carbon Nanotubes

Abstract

Film samples of poly(vinylidene fluoride-trifluoroethylene) added with 2% of carbon nanotubes are synthesized. The temperature of ferroelectric phase transition and dielectric permeability of the samples are determined at a frequency of 1 MHz. Surface morphology and piezoelectric constant of copolymer films are measured using scanning probe microscopy. It has been shown that the incorporation ofcarbon nanotubes into the polymer matrix increases the value of effective piezoelectric coefficient and dielectric constant of the copolymer poly(vinylidene fluoride-trifluoroethylene).

About the Authors

D. A. Kiselev
Национальный исследовательский технологический университет «МИСиС»; Национальный исследовательский университет «МИЭТ»
Russian Federation


M. V. Silibin
Национальный исследовательский университет «МИЭТ»
Russian Federation


A. V. Solnyshkin
Национальный исследовательский университет «МИЭТ»; Тверской государственный университет
Russian Federation


A. V. Sysa
Национальный исследовательский университет «МИЭТ»
Russian Federation


I. K. Bdikin
Национальный исследовательский университет «МИЭТ»
Russian Federation


References

1. Tayi A. S. et al. Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes / Nature. 2012. Vol. 488. N 7412. P. 485 -489.

2. Zhang G. et al. Ferroelectric Polymer Nanocomposites for Room Temperature Electrocaloric Refrigeration / Advanced Materials. 2015. Vol. 27. N8. P. 1450- 1454.

3. Heredia A. et al. Nanoscale Ferroelectricity in Crystalline γ-Glycine / Advanced Functional Materials. 2012. Vol. 22. N 14. P. 2996 - 3003.

4. Rahman M. A. et al. Fabrication and characterization of highly efficient flexible energy harvesters using PVDF - graphene nanocomposites / Smart Materials and Structures. 2013. Vol. 22. N 8. P. 085017.

5. Heredia A. et al. Preferred deposition of phospholipids onto ferroelectric P (VDF-TrFE) films via polarization patterning / Journal of Physics D: Applied Physics. 2010. Vol. 43. N 33. P. 335301.

6. Chae S. H., Lee Y. H. Carbon nanotubes and graphene towards soft electronics / Nano Convergence. 2014. Vol. 1. N 1. P. 1 - 26.

7. Geim A. K. Graphene: status and prospects / Science. 2009. Vol. 324. N5934. P. 1530- 1534.

8. Chen D. et al. Electromagnetic and microwave absorbing properties of RGO@ hematite core-shell nanostructure/PVDF composites / Composites Science and Technology. 2014. Vol. 102. P. 126 - 131.

9. Bhattacharya M. Polymer Nanocomposites - A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers / Materials. 2016. Vol. 9. N 4. P. 262.

10. Guan X. et al. PZT/PVDF composites doped with carbon nanotubes / Sensors and Actuators A: Physical. 2013. Vol. 194. P. 228 - 231.

11. Carabineiro S. A. C. et al. Effect of the carbon nanotube surface characteristics on the conductivity and dielectric constant of carbon nanotube/poly(vinylidene fluoride) composites / Nanoscale Res. Lett. 2011. Vol. 6. N1. P. 1-5.

12. Layek R. K. et al. Physical and mechanical properties of poly (methyl methacrylate)-functionalized graphene/poly (vinylidine fluoride) nanocomposites: Piezoelectric ß polymorph formation / Polymer. 2010. Vol. 51. N24. P. 5846-5856.

13. Rahman M. A., Chung G. S. Synthesis of PVDF-graphene nanocomposites and their properties / J. Alloys Compounds. 2013. Vol. 581. P. 724 - 730.

14. Adohi B. J. P. et al. Measurement of the microwave effective permitivity in tensile-strained polyvinylidene difluoride trifluoroethylene filled with graphene / Appl. Phys. Lett. 2014. Vol. 104. N 8. P. 082902.

15. Tsonos C. et al. Multifunctional nanocomposites of poly(vinylidene fluoride) reinforced by carbon nanotubes and magnetite nanoparticles / Polymer. 2015. Vol. 5. P. 7.

16. Jiang Z. Y. et al. Enhanced ferroelectric and pyroelectric properties of poly(vinylidene fluoride) with addition of graphene oxides / J. Appl. Phys. 2014. Vol. 115. N20. P. 204101.

17. Chiu K. C. et al. Prominent electric properties of BiFeO3 shells sputtered on ZnO-nanorod cores with LaNiO3 buffer layers / Nanotechnology. 2013. Vol. 24. N22. P. 225602.

18. Solnyshkin A. V. et al. Anomalies of dielectric properties of vinylidene fluoride-trifluoroethylene copolymer films / Physics of the Solid State. 2008. Vol. 50. N 3. P. 562 - 567.

19. Solnyshkin A. V., Kislova I. L. Analysis of the Relaxor-Like Behavior in a Ferroelectric Copolymer P (VDF-TrFE) / Ferroelectrics. 2010. Vol. 398. N1. P. 77-84.

20. Solnyshkin A. V. et al. Atomic force microscopy study of ferroelectric films of P (VDF-TrFE) copolymer and composites based on it / Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques. 2008. Vol. 2. N 5. P. 692 - 695.

21. Rodriguez B. J. et al. Dual-frequency resonance-tracking atomic force microscopy / Nanotechnology. 2007. Vol. 18. N 47. P. 475504.

22. Jiang Z. Y. et al. Formation of piezoelectric ß-phase crystallites in poly (vinylidene fluoride)-graphene oxide nanocomposites under uniaxial tensions / Journal of Physics D: Applied Physics. 2015. Vol. 48. N 24. P. 245303.


Review

For citations:


Kiselev D.A., Silibin M.V., Solnyshkin A.V., Sysa A.V., Bdikin I.K. Dielectric and Piezoelectric Properties of Composite Copolymer Poly(vinylidene fluoride-trifluoroethylene) with Carbon Nanotubes. Industrial laboratory. Diagnostics of materials. 2017;83(2):34-37. (In Russ.)

Views: 363


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)