ICP-AES DETERMINATION OF ALLOYING ELEMENTS IN Nb – Si BASED COMPOSITES
https://doi.org/10.26896/1028-6861-2018-84-1-I-14-20
Abstract
At present, high-temperature composites of the Nb-Si-system are the most promising for use as High-temperature composites of Nb – Si-system are among the most promising materials to be used as heat-resistant structural materials and as an alternative to high- temperature nickel-based alloys that have largely exhausted their ability to increase the operating temperature. The next generation of high-temperature materials for casting blades of gas turbine engines should provide a temperature of about 1350°C or higher which can significantly improve the efficiency of engines and contribute to their environmental performance. Nb – Si composites are obtained by traditional methods of ingot production and powder metallurgy. Statutory regulations impose heavy demands on the chemical composition of aviation materials used for manufacturing heavy-duty parts of gas turbine engines. We present a technique for determination of the alloying elements Si, Ti, W, Mo, Hf, Cr, and Al in advanced high-temperature Nb – Si based composite materials (CM) using inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and microwave sample preparation. Conditions of sample dissolution, method of calibration line construction, and analytical lines free of significant spectral overlapping are specified to determine all the alloying elements of Nb – Si-based composites. To assess the metrological characteristics of the developed technique we used model solutions of Nb – Si composites prepared from state standard reference sample of solutions of ions of the elements. The repeatability of the technique does not exceed 1% rel., the intermediate precision does not exceed 3% rel.
About the Authors
R. M. DvoretskovRussian Federation
I. L. Svetlov
Russian Federation
F. N. Karachevtsev
Russian Federation
T. N. Zagvozdkina
Russian Federation
References
1. Svetlov I. L., Abuzin Yu. A., Babich B. N., et al. High-temperature niobium composites reinforced with niobium silicides / Zh. Funkts. Mater. 2007. Vol. 1. N 2. P. 48 – 52 [in Russian].
2. Ospennikova O. G., Pod’’yachev V. N., Stolyankov Yu. V. Refractory alloys for new technology / Trudy VIAM. Йlektron. Nauch.-Tekhn. Zh. 2016. N 10(46). St. 05. URL: http://www.viam-works.ru (data obrashcheniya: 03.04.2017). DOI: 10.18577/2307-6046-2016-0-10-5-5 [in Russian].
3. Grashchenkov D. V., Chursova L. V. Strategy and development of composite and functional materials / Aviats. Mater. Tekhnol. 2012. Special issue. P. 231 – 241 [in Russian].
4. Kablov E. N., Svetlov I. L., Efimochkin I. Yu. High-temperature Nb – Si composites / Vestn. MGTU im. N. Й. Baumana. Ser. Mashinostr. 2011. N SP2. P. 164 – 173 [in Russian].
5. Kablov E. N., Folomejkin Y. I., Stolyarova V. L., Lopatin S. I. Processes of interaction of niobium-silicon melt with refractory ceramics / Rus. J. General Chem. 2016. Vol. 86. P. 2105 – 2108.
6. Shchetanov B. V., Efimochkin I. Yu., Paйgle S. V., Karachevtsev F. N. Investigation of the high-temperature strength of in-situ composites based on Nb reinforced with б-Al2O3 single-crystal fibers / Aviats. Mater. Tekhnol. 2016. N 3(42). P. 53 – 59. DOI: 10.18577/2071-9140-2016-0-3-53-59 [in Russian].
7. Svetlov I. L. High-temperature niobium-silicon composites — replacement of single-crystal nickel heat-resistant alloys / Dvigatel’. 2010. N 5. P. 36 [in Russian].
8. Kuz’mina N. A., Bondarenko Yu. A. Investigation of the phase composition and structure of a niobium-silicon composite obtained by directional crystallization in a liquid metal coolant / Trudy VIAM. Йlektron. Nauch.-Tekhn. Zh. 2016. N 5(41). Art. 03. URL: http://www.viam-works.ru (accessed 04.04.2017). DOI: 10.18577/2307-6046-2016-0-5-3-3 [in Russian].
9. Svetlov I. L., Kuz’mina N. A., Neiman A. V. Microstructure of nickel Ni/Ni3Al-NbC and niobium Nb-Nb5Si3 eutectic composites / Materialovedenie. 2015. N 3. P. 50 – 56 [in Russian].
10. Karpov Yu. A., Baranovskaya V. B. Analytical control is an integral part of the diagnostics of materials / Zavod. Lab. Diagn. Mater. 2017. Vol. 83. N 1. P.5–12[inRussian].
11. Karpov Yu. A., Baranovskaya V. B. The role and possibilities of analytical control in metallurgy / Tsvet. Met. 2016. N 8(884). P. 63 – 67 [in Russian].
12. Elizarova I. R., Masloboeva S. M. eculiarity of the inductively coupled plasma — mass spectrometry application for the analysis of high-purity precursors based on niobium pentoxide / Vestn. MGTU im. N. Й. Baumana. 2013. Vol. 16. N 3. P. 550 [in Russian].
13. Alekseev A. V., Yakimovich P. V., Min P.G.Determination of impurities in a niobium-based alloy by the ICP-MS method. Part I / Trudy VIAM. Йlektron. Nauch.-Tekhn. Zh. 2015. N 6. Art. 04. URL: http://www.viam-works.ru (accessed 05.04. 2017). DOI: 10.18577/2307-6046-2015-0-6-4-4 [in Russian].
14. Alekseev A. V., Yakimovich P. V., Min P.G.Determination of impurities in a niobium-based alloy by the ICP-MS method. Part II / Trudy VIAM. Йlektron. Nauch.- Tekhn. Zh. 2015. N 7. Art. 03. URL: http://www.viam-works.ru (accessed 05.04. 2017). DOI: 10.18577/2307-6046-2015-0-7-3-3 [in Russian].
15. Kablov E. N. Innovative developments FSUE “VIAM” SSC RF on the implementation of “Strategic directions for the development of materials and technologies for their processing until 2030” / Aviats. Mater. Tekhnol. 2015. N 1(34). P. 3 – 33. DOI: 10.18577/2071-9140-2015-0-1-3-33 [in Russian].
Review
For citations:
Dvoretskov R.M., Svetlov I.L., Karachevtsev F.N., Zagvozdkina T.N. ICP-AES DETERMINATION OF ALLOYING ELEMENTS IN Nb – Si BASED COMPOSITES. Industrial laboratory. Diagnostics of materials. 2018;84(1(I)):14-20. (In Russ.) https://doi.org/10.26896/1028-6861-2018-84-1-I-14-20