Determination of the reactivity of cellulosic substrates towards enzymatic hydrolysis
https://doi.org/10.26896/1028-6861-2018-84-10-5-11
Abstract
About the Authors
E. I. KashcheyevaRussian Federation
Ekaterina I. Kashcheyeva
Biysk
V. V. Budaeva
Russian Federation
Vera V. Budaeva
Biysk
References
1. Chen B., Zhao B., Li M., et al. Fractionation of rapeseed straw by hydrothermal/dilute acid pretreatment combined with alkali post-treatment for improving its enzymatic hydrolysis / Biores. Technol. 2017. Vol. 225. P. 127 – 133.
2. Sills D. L., Gossett J. M. Using FTIR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses / Biotechnol. Bioeng. 2012. Vol. 109. N 2. P. 353 – 362.
3. Alvira P., Tomбs-Pejу E., Ballesteros M., et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review / Biores. Technol. 2010. Vol. 101. N 13. P. 4851 – 4861.
4. Li K., Wan J., Wang X., et al. Comparison of dilute acid and alkali pretreatments in production of fermentable sugars from bamboo: Effect of Tween 80 / Industrial Crops and Products. 2016. Vol. 83. P. 414 – 422.
5. Sun S., Sun S., Cao X., et al. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials / Biores. Technol. 2016. Vol. 199. P. 49 – 58.
6. Van Dyk J. S., Pletschke B. I. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes — factors affecting enzymes, conversion and synergy / Biotechnol. Adv. 2012. Vol. 30. N 6. P. 1458 – 1480.
7. Gama M. Bacterial NanoCellulose from Biotechnology to Bio-Economy. — N.Y.: Elsevier, 2016. — 240 p.
8. Sakovich G. V., Skiba E. A., Budaeva V. V., et al. Technological fundamentals of bacterial nanocellulose production from zero prime-cost feedstock / Doklady Biochemistry and Biophysics. 2017. Vol. 477. P. 357 – 359.
9. Baram G. I. Progress in microcolumn high-performance liquid chromatography and its application to solve complex analytical problems. Doctoral thesis. — Irkutsk, 1997. — 56 p. [in Russian].
10. Obolenskaya A. V., Elnitskaya Z. P., Leonovich A. A. Laboratory Works on Wood and Cellulose Chemistry. — Moscow: Йkologiya, 1991. — 320 p. [in Russian].
11. State standard GOST 6840–78. Cellulose. Method for determination of alpha-cellulose. — Moscow: Izd. standartov, 1984. — 6 p. [in Russian].
12. State standard GOST 10820–75. Cellulose. Method for determination of pentosans. — Moscow: Izd. standartov, 1975. — 7 p. [in Russian].
13. Interstate standard GOST 18461–93. Cellulose. Method for quantification of ash. — Moscow: IPK Izd. standartov, 1995. — 8 p. [in Russian].
14. State standard GOST 25438–82. Dissolving cellulose. Methods for determination of intrinsic viscosity. — Moscow: Izd. standartov, 1982. — 20 p. [in Russian].
15. Thygesen A., Oddershede J., Lilholt H., et al. On the determination of crystallinity and cellulose content in plant fibres / Cellulose. 2005. Vol. 12. N 6. P. 563 – 576.
16. Gusakov A. V., Kondratyeva E. G., Sinitsyn A. P. Comparison of two methods for assaying reducing sugars in the determination of carbohydrase activities / Int. J. Anal. Chem. 2011. Vol. 2011. P. 283658.
17. Veshnyakov V. A., Habarov Yu. G., Kamakina N. D. Comparison of reducing compounds determination methods: Bertrand’s method, ebulliostatical and photometrical methods / Khim. Rastit. Syr’ya. 2008. N 4. P. 47 – 50 [in Russian].
18. Fedorova G. A., Kozhanova L. A., Azarova I. N. Application of microcolumn high-performance liquid chromatography in medicine. Part II / Vestn. Vosstanovit. Med. 2008. N 2(24). P. 47 – 50 [in Russian].
19. Budaeva V. V., Makarova E. I., Skiba E. A., et al. Enzymatic hydrolysis of the products of hydro-thermobaric processing of Miscanthus and oat hulls / Catalysis in Industry. 2013. Vol. 5. N 4. P. 335 – 341.
20. Makarova E. I., Budaeva V. V., Skiba E. A., et al. Enzymatic hydrolysis of celluloses obtained via the hydrothermal processing of Miscanthus and oat hulls / Catalysis in Industry. 2014. Vol. 6. N 1. P. 67 – 71.
21. Denisova M. N., Makarova E. I., Pavlov I. N., et al. Enzymatic hydrolysis of hydrotropic pulp at different substrate concentrations / Appl. Biochem. Biotechnol. 2016. Vol. 178. N 6. P. 1196 – 1206.
22. Tarabanko V. E., Kaygorodov K. L., Skiba E. A., et al. Processing pine wood into vanillin and glucose by sequential catalytic oxidation and enzymatic hydrolysis / J. Wood Chem. Technol. 2017. Vol. 37. N 1. P. 43 – 51.
23. Skiba E. A., Baibakova O. V., Budaeva V. V., et al. Pilot technology of ethanol production from oat hulls for subsequent conversion to ethylene / Chem. Eng. J. 2017. Vol. 329. P. 178 – 186.
24. Makarova E. I., Budaeva V. V., Kukhlenko A. A., et al. Enzyme kinetics of cellulose hydrolysis of miscanthus and oat hulls / 3 Biotech. 2017. Vol. 7. P. 317.
25. Budaeva V. V., Makarova E. I., Skiba E. A., et al. A study of acid and enzymatic hydrolyses of rape straw pellets / Polzunov. Vestn. 2013. N 3. P. 173 – 179 [in Russian].
26. Shcherbakova T. P., Udoratina E. V., Makarova E. I., et al. The effect of mechano-chemical stimuli on the enzymatic hydrolysis efficiency of lignocellulosic feedstocks / Polzunov. Vestn. 2013. N 3. P. 224 – 230 [in Russian].
27. De Bhowmick G., Sarmah A. K., Sen R. Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products / Biores. Technol. 2018. Vol. 247. P. 1144 – 1154.
28. Aleshina L. A., Lyuhanova I. V., Budaeva V. V., et al. X-ray diffraction analysis results for non-woody celluloses / Uch. Zap. Petrozavod. Gos. Univ. 2011. N 8(121). P. 114 – 117 [in Russian].
29. Hu F., Ragauskas A. Pretreatment and Lignocellulosic Chemistry / BioEnergy Res. 2012. Vol. 5. N 4. P. 1043 – 1066.
Review
For citations:
Kashcheyeva E.I., Budaeva V.V. Determination of the reactivity of cellulosic substrates towards enzymatic hydrolysis. Industrial laboratory. Diagnostics of materials. 2018;84(10):5-11. (In Russ.) https://doi.org/10.26896/1028-6861-2018-84-10-5-11