Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Determination of gold in microelectronic waste using atomic absorption spectroscopy and gravimetry

https://doi.org/10.26896/1028-6861-2018-84-10-12-19

Abstract

The procedures of gold determination in microelectronic waste using flame atomic absorption spectroscopy (FAAS) and gravimetric analysis are developed. The developed methods are used for gold determination in the waste of gold etching (KI + I2) solution, technological mixture formed after cleaning vacuum deposition unit with aqua-regia solution as well as in a gold-containing powder obtained after reprocessing of liquid wastes. Optimum conditions for preparation and analysis of liquid and solid wastes having complex and variable matrix composition are specified. The FAAS methods of analysis provide determination of wastes in a wide range of gold concentration: in the solution for gold etching within the concentration range from 0.02 to 40 g/dm3, in the liquid phase of the technological mixture — from 0.1 to 30 g/dm3, in the solid phase of the technological mixture and in the gold-containing powder — from 3 to 80 wt. % with the relative error no more than ±5%. The gravimetric methods provide gold determination in the liquid phase of the technological mixture after gold reduction with hydrazine hedrochloride within the range of gold concentration from 0.5 to 500.0 g/dm3 with the relative error no more than ±1.3%. It is shown that the developed methods of analysis demonstrate good convergence of the results of analysis. The methods of analysis are certified by the Metrological Department of the enterprise and can be in a support technology of microelectronics production.

About the Authors

S. I. Usenko
Russian Federal Nuclear Center - All-Russian Research Institute of Experimintal Physics
Russian Federation
Svetlana I. Usenko
Sarov, Nizhni Novgorod region


V. N. Golubeva
Russian Federal Nuclear Center - All-Russian Research Institute of Experimintal Physics
Russian Federation
Valentina N. Golubeva
Sarov, Nizhni Novgorod region


I. A. Konopkina
Russian Federal Nuclear Center - All-Russian Research Institute of Experimintal Physics
Russian Federation
Irina A. Konopkina
Sarov, Nizhni Novgorod region


I. V. Astakhova
Russian Federal Nuclear Center - All-Russian Research Institute of Experimintal Physics
Russian Federation
Inga V. Astakhova
Sarov, Nizhni Novgorod region


O. V. Vakhnina
Russian Federal Nuclear Center - All-Russian Research Institute of Experimintal Physics
Russian Federation
Olga V. Vakhnina
Sarov, Nizhni Novgorod region


A. Yu. Korableva
Russian Federal Nuclear Center - All-Russian Research Institute of Experimintal Physics
Russian Federation
Anna Yu. Korableva
Sarov, Nizhni Novgorod region


O. A. Anishenko
Russian Federal Nuclear Center - All-Russian Research Institute of Experimintal Physics
Russian Federation
Oksana A. Anishenko
Sarov, Nizhni Novgorod region


A. A. Kalinina
Russian Federal Nuclear Center - All-Russian Research Institute of Experimintal Physics
Russian Federation
Anna A. Kalinina
Sarov, Nizhni Novgorod region


K. B. Zhogova
Russian Federal Nuclear Center - All-Russian Research Institute of Experimintal Physics
Russian Federation
Kira B. Zhogova
Sarov, Nizhni Novgorod region


References

1. Zhitenko L. P. State of the Art and Problems in Determining High Gold Contents in Alloys and Articles (Review) / Inorg. Mater. 2013. Vol. 49. N 14. P. 1294 – 1302.

2. Doronina M. S., Karpov Yu. A., Baranovskaya V. B. Combined Methods of Analysis of Metal-Containing Raw Material (Review) / Inorg. Mater. 2017. Vol. 53. N 14. P. 1411 – 1417.

3. Ostapchuk I. S., Kuznetsov A. P., Korotkov V. A. Determination of Platinum, Palladium, Rhodium, Ruthenium, Iridium, Gold and Silver in the Concentrates of Platinum Group Metals of Different Grades (KP-1, KP-2, OK, and KPP) / Zavod. Lab. Diagn. Mater. 2014. Vol. 80. N 10. P. 17 – 20 [in Russian].

4. Korda T. M., Demidova M. G., Guskova E. A. Determination of Platinum Group Metals and Gold in Carbon-Containing Geological Objects / Zavod. Lab. Diagn. Mater. 2012. Vol. 78. N 5. P. 7 – 10 [in Russian].

5. Turkin A. A., Chizhov A. S., Seregina I. F., et al. Determination of Gold and Antimony in Advanced Materials Based on Tin Dioxide Using Inductively Coupled Plasma Mass Spectrometry / Inorg. Mater. 2015. Vol. 51. N 14. P. 1420 – 1422.

6. Goganov A. D., Ivanov O. A., Plotnikov R. I., et al. The Use of Energy-Dispersive X-Ray Fluorescence Analyzer BRA-18 for Gold Determination in Ores / Zavod. Lab. Diagn. Mater. 2013. Vol. 79. N 10. P. 16 – 19 [in Russian].

7. Busev A. I., Ivanov V. M. Analytical chemistry of elements. Gold. — Moscow: Nauka, 1973. — 264 p. [in Russian].

8. RF State Standard GOST 27973.0–88. Gold. General requirements for methods of analysis. — Moscow: Izd. Standartov, 1999. — 3 p. [in Russian].

9. RF Stat Standard GOST 12563.1–82. Gold-palladium alloys. Method for the determination of gold. — Moscow: Izd. Standartov, 1984. — 3 p. [in Russian].

10. Kuzmin N. M., Kubrakova I. V., Puhovskaya V. M., Kudinova T. F. Rapid Determination of Noble Metals in Some Ores, Their Processing Products, and Catalysts by Atomic Absortion and Inductively Coupled Plasma Atomic Emission Spectrometry / Zh. Anal. Khimii. 1994. Vol. 49. N 2. P. 199 – 208 [in Russian].

11. Simakov V. A., Isaev V. E. X-Ray Spectral Determination of Gold in Geological Samples after Its Concentration by Low-Temperature Fire Assay / Inorg. Mater. 2016. Vol. 52. N 14. P. 1440 – 1443.

12. Andreev A. V., Firsov V. I., Cipenyuk Yu. M. Neutron Activation Analysis of Geological Samples Using Microtron and the Neutron Generator / Zavod. Lab. Diagn. Mater. 2012. Vol. 78. N 5. P. 19 – 23 [in Russian].

13. Gur’eva R. F., Savvin S. B. Spectrophotometric Methods for Determining Noble Metals / J. Anal. Chem. 2002. Vol. 57. N 11. P. 980 – 996.

14. Lidin R. A., Molochko V. A., Andreeva L. L. Chemical properties of inorganic substances. — Moscow: Khimiya, 2000. — 480 p. [in Russian].

15. Malyshev V. M., Rumyantsev D. V. Gold. — Moscow: Metallurgiya, 1979. — 288 p. [in Russian].

16. Pupyshev A. A. Atomic absorption spectral analysis. — Moscow: Technosfera, 2009. — 784 p. [in Russian].

17. RF Pat. 2464546, MPK51 G 01 N 21/31, G 01 N 21/72, G 01 J 3/42, C 01 G 7/00. Method for the determination of gold in the waste products of electronic equipment / Usenko S. I. N 2011132691/04; publ. 20.10.2012 [in Russian].

18. RMG 61–2010. State System for ensuring the uniformity of Measurement. Accuracy, trueness and precision of the Methods of quantitative chemical analysis. The methods of evaluation. — Moscow: Standartinform, 2013. — 58 p. [in Russian].

19. Charykov A. K. Mathematical processing of the results of chemical analysis. — Leningrad: Khimiya, 1984. — 168 p. [in Russian].

20. Price W. J. Analytical atomic absorption spectrometry. — London – New York: Heyden, 1972. — 239 p.

21. Sharlo G. Methods of analytical chemistry. Quantitative analysis of inorganic compounds. Part 2. — Moscow: Khimiya, 1969. — 1203 p. [in Russian].


Review

For citations:


Usenko S.I., Golubeva V.N., Konopkina I.A., Astakhova I.V., Vakhnina O.V., Korableva A.Yu., Anishenko O.A., Kalinina A.A., Zhogova K.B. Determination of gold in microelectronic waste using atomic absorption spectroscopy and gravimetry. Industrial laboratory. Diagnostics of materials. 2018;84(10):12-19. (In Russ.) https://doi.org/10.26896/1028-6861-2018-84-10-12-19

Views: 734


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)