Preview

Industrial laboratory. Diagnostics of materials

Advanced search

The effect of plastic deformation and subsequent heat treatment on the acoustic and magnetic properties of 12Khl8N10T steel

https://doi.org/10.26896/1028-6861-2019-85-2-23-28

Abstract

The results of studying the effect of plastic deformation and subsequent heat treatment on the acoustic and electromagnetic properties of austenitic steel 12KM8N10T (analog AISI 321) are presented. Cryogenic corrosion-resistant austenitic steel 12Khl8N10T undergoes strain-induced martensitic transformation, which significantly changes the electromagnetic, elastic and strength properties of the material. The formation of the new phase in conjunction with the process of plastic deformation affects the crystallographic texture of the alloy. A change in the texture of the material was estimated using the acoustic anisotropy parameter determined by the ultrasonic method. Changes in the magnetic properties attributed to appearance of the ferromagnetic phase of martensite in the paramagnetic austenite matrix were fixed with an eddy current ferritometer. It is shown that at the initial stage of plastic deformation (uniaxial tension) the value of the acoustic anisotropy parameter decreases probably due to the fact that change in the texture is more affected by the process of austenite deformation than the formation of α'-martensite. Further deformation of the material promotes formation of the new phase thus strengthening the impact of the new phase on the crystallographic texture and results in increase in the acoustic anisotropy parameter. It is shown that annealing at a temperature of 350, 600, 700, and 1050°C of pre-deformed stainless steel decreases the parameter of acoustic anisotropy and the volume content of the magnetic phase. It is shown that the parameter of acoustic anisotropy of the material drops to zero after annealing at 600°C, whereas at a temperature of 1050°C the martensitic phase completely disintegrates and the texture is determined only by the austenite phase.

About the Authors

A. V. Gonchar
Mechanical Engineering Research Institute — branch of the Federal Research Center of The Institute of Applied Physics, RAS
Russian Federation

Alexandr V. Gonchar

Nizhny Novgorod




V. A. Klyushniko
Mechanical Engineering Research Institute — branch of the Federal Research Center of The Institute of Applied Physics, RAS
Russian Federation

Vyacheslav A. Klyushniko

Nizhny Novgorod



V. V. Mishakin
Mechanical Engineering Research Institute — branch of the Federal Research Center of The Institute of Applied Physics, RAS
Russian Federation

Vasily V. Mishakin

Nizhny Novgorod




References

1. Gol’dshtein М. I., Grachev S. V, Veksler Yu. G. Special steel. — M.: MISIS, 1999. — 408 p. [in Russian].

2. Singh J. Influence of deformation on the transformation of austenitic stainless steels / Journal of Materials Science. 1985. Vol. 20. E 3157 - 3166.

3. Powell G. W., Marshall E. R., Backofen W. A. Strain Hardening of Austenitic Stainless Steel / Trans, of the ASM. 1958. Vol. 50. E 478 - 497.

4. Hecker S. S., Stout M. G., Staudhammer K. P., et al. Effects of strain state and strain rate on deformation induced transformation in 304 stainless steel: part I. Magnetic measurements and mechanical behavior / Metall. Trans. A. 1982. Vol. 13. E 619 - 626.

5. Padilha A. F., Rios P. R. Decomposition of austenite in stainless steel / ISIJ International. 2002. Vol. 42. E 325 - 337.

6. Huang G., Matlock D., Krauss G. Martensite formation, strain rate sensitivity and deformation behavior of Type 304 Austenitic Steel Sheet / Metall. Trans. A. 1989. Vol. 20A. E 1239 - 1246.

7. Talonen J., Nenonen P., Pape G., et al. Effect of strain rate on the strain-induced у —> a' martensite transformation and mechanical properties of austenitic stainless steels / Metall. Mater. Trans. A. 2005. Vol. 36A. E 421 - 432.

8. Lichtenfeld J. A., Mataya M. C., Van Tyne C. J. Effect of Strain Rate on Stress-Strain Behavior of Alloy 309 and 304L Austenitic Stainless Steel / Metall. Mater. Trans. A. 2006. Vol. 37. E 147-161.

9. Angel T. Formation of Martensite in Austenitic Stainless Steels / JISI. 1954. Vol. 177. E 165 - 174.

10. Byun T., Hashimoto N., Farrell K. Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels / Acta Mater. 2004. Vol. 52. E 3889 - 3899.

11. Talonen J., Hannien H. Damping properties of austenitic stainless steels containing strain-induced martensite / Metall. Mater. Trans. A. 2004. Vol. 35. E 2401 - 2406.

12. Choi J.-Y., Jin W. Strain induced martensite formation and its effect on strain hardening behavior in the cold drawn 304 austenitic stainless steels / Scripta Mater. 1997. Vol. 36. E 99 -104.

13. Lecroisey F., Pineau A. Martensitic transformations induced by plastic deformation in the Fe - Ni - Cr - C system / Metall Trans. 1972. Vol. 3. E 387 - 396.

14. Olson G., Cohen M. Kinetics of strain-induced martensitic nucleation / Metall. Trans. A. 1975. Vol. 6A. E 791 - 795.

15. Barbier D., Gey N., Allain S., et al. Analysis of the tensile behavior of a TWIE steel based on the texture and microstructure evolutions / Mater. Sci. Eng. A. 2009. Vol. 500. E 196 - 206.

16. Petit B., Gey N., Cherkaoui M., et al. Deformation behavior and microstructure/texture evolution of an annealed 304 AISI stainless steel sheet. Experimental and micromechanical modeling / International Journal of Plasticity. 2007. Vol. 23(2). E 323 - 341.

17. Mishakin V. V, Klyushnikov V A., Gonchar A. V Relation between the deformation energy and the Poisson ratio during cyclic loading of austenitic steel / Technical Physics. 2015. Vol. 60. E 665 - 668.

18. Gorkunov E. S., Zadvorkin S. M., Mitropol’skaya S. Yu., et al. Change in the magnetic properties of metastable austenitic steel under elastic-plastic deformation / MiTOM. 2009. N9. E 15-21. [in Russian],

19. Rigmant M. B,, Gladkovskiy S. V, Gorkunov E. S., et al. On the possibility of magnetic non-destructive testing of elasto-plastic deformations in steels with metastable austenite / Kontrol’ Diagn. 2000. N 9. E 62 - 63. [in Russian],

20. Rigmant M. B„ Nichipuruk A. P., Khudyakov B. A., et al. Instruments for magnetic phase analysis of products made of austenitic corrosion-resistant steels / Defektoskopiya. 2005. N 11. E 3 - 14. [in Russian],

21. Korkh M. K., Rigmant M. B., Davydov D. I., et al. Determination of the phase composition of three-phase chromium-nickel steels by magnetic properties / Defektoskopiya. 2015. N 12. E 20 - 31. [in Russian],

22. Gonchar A. V, Mishakin V. V, Klyushnikov V A., et al. Variation of Elastic Characteristics of Metastable Austenite Steel under Cycling Straining / Technical Physics. 2017. Vol. 62. N4. E 537-541. ‘

23. Sayers С. M. Ultrasonic velocities in anisotropic polycrystalline aggregates / Appl. Phys. 1982. Vol. 15. E 2157 - 2167.

24. Mishakin V V, Klyushnikov V A., Kassina N. V Research on the fracture process of steels by the acoustic method and the pitch net method / Journal of Machinery Manufacture and Reliability. 2009. Vol. 38. E 443 - 447.

25. Mishakin V V, Gonchar A. V., Kurashkin К. V., et al. Investigation of failure at static loading of welded joints by acoustic method / Tyazh. Mashinostr. 2009. N 7. E 27 - 30. [in Russian],

26. Allen D., Sayers C. The Measurement of Residual Stress in Textured Steel Using an Ultrasonic Velocity Combinations Technique / Ultrasonics. 1984. Vol. 22. E 179 - 188.

27. Pazylov Sh. T., Omorov N. A., Rudayev Ya. I. On deformation anisotropy of aluminum alloys / Vestn. Tambov. Univ. Ser. Estestv. Tekhn. Nauki. 2010. Vol. 15. N 3 - 1. E 974 - 975. [in Russian].


Review

For citations:


Gonchar A.V., Klyushniko V.A., Mishakin V.V. The effect of plastic deformation and subsequent heat treatment on the acoustic and magnetic properties of 12Khl8N10T steel. Industrial laboratory. Diagnostics of materials. 2019;85(2):23-28. (In Russ.) https://doi.org/10.26896/1028-6861-2019-85-2-23-28

Views: 949


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)