Assessing of resistance to intercrystalline corrosion of 20Kh13 and 40Kh13 steels
https://doi.org/10.26896/1028-6861-2025-91-10-34-41
Abstract
Martensitic steels of the Kh13 type, such as 20Kh13 and 40Kh13, are widely used, for example, in the production of medical instruments. This study presents the results of assessing the susceptibility to intergranular corrosion (IGC) of 20Kh13 and 40Kh13 steels in their initial state (after hot rolling) and after heat treatment (annealing to produce granular pearlite) using the AMUF accelerated test method. The microstructure was analyzed using scanning electron microscopy, along with the chemical composition and hardness of the investigated steels. It was found that after annealing, 20Kh13 steel exhibits a higher susceptibility to IGC compared to 40Kh13, despite their similar structural characteristics. This is attributed to differences in the morphology of the carbide phase — smaller and more uniformly distributed carbides in 40Kh13 provide better corrosion resistance. The obtained results can be used to improve the methodology for evaluating the susceptibility of martensitic steels to IGC, thereby enabling more reliable quality assessment of medical instruments and predicting their service life.
About the Authors
Yu. S. MordovinaRussian Federation
Yuliya S. Mordovina.
24, ul. Minina, Nizhny Novgorod, 603155.
M. A. Chernigin
Russian Federation
Mikhail A. Chernigin.
24, ul. Minina, Nizhny Novgorod, 603155.
M. E. Fedosova
Russian Federation
Marina E. Fedosova.
49, ul. Gaydara, Dzerzhinsk, Nizhegorodskaya obl., 606026.
References
1. Brodov A. A., Gribkov A. A., Uglov V. A., et al. Trends in the Russian market and production of medical products based on metals / Izv. Vuzov. 2020. Vol. 63. Nos. 11 – 12. P. 867 – 872 [in Russian]. DOI: 10.17073/0368-0797-2020-11-12-867-872
2. Khlobystov D. O., Negodin D. A., Moskalev A. E., et al. Results of mastering the production of hot-rolled bars and forgings from titanium alloys at JSC «ChMZ» for the needs of Russian manufacturers of machine-building, shipbuilding, aviation and medical products / Titan. 2018. Vol. 61. No. 3. P. 40 – 47 [in Russian].
3. Veinov V. P., Musin I. N., Sakhabieva E. V. Modern medical instruments. — Kazan: KNITU, 2016. — 42 p. [in Russian].
4. Alipov A. I. Corrosion of metals on the example of surgical instruments / BMIK. 2015. Vol. 5. No. 6. P. 984 [in Russian].
5. Enescu M., Stoian E., Petre I., et al. The Influence of Heat Treatments in Corrosion Resistance of Austenitic Steels / Sci. Bull. Valahia Univ. — Mater. Mech. 2023. Vol. 19. P. 7 – 12. DOI: 10.2478/bsmm-2023-0001
6. Safonov V. A. Intergranular corrosion. https://bigenc.ru/c/ mezhkristallitnaia-korroziia-a22426/?v=10429362 (accessed 25.11.2024) [in Russian].
7. Hudecová S., Uhríčik M., Palček P., et al. The influence of structure, sensitization and corrosion on the fatigue properties of austenitic steel / J. Phys. Conf. Ser. 2024. Vol. 2712. P. 012008. DOI: 10.1088/1742-6596/2712/1/012008
8. Safonov I. A., Kharina I. L., Korneev A. E. Electrochemical method of non-destructive testing of the susceptibility to intergranular corrosion of metal equipment of nuclear power plants / Industr. Lab. Mater. Diagn. 2016. Vol. 82. No. 5. P. 30 – 32 [in Russian].
9. Shubadeeva L. I., Revyakina O. K., Makarchuk T. B., et al. The effect of heatings on corrosion resistance of 12Kh18N10T stainless steel / Zashch. Met. 1996. Vol. 32. No. 2. P. 133 – 138 [in Russian].
10. Briant G. L., Holl E. L. Heat-to-Heat Variability in the Corrosion Resistance and Microstructure of Low Carbon AISI 316 Nuclear Grade Stainless Steel / Corrosion. 1987. Vol. 43. No. 2. P. 525 – 533.
11. Bruemmer S. M. Composition-Based Correlations to Predict Sensitization Resistance of Austenitic Stainless Steels / Corrosion. 1986. Vol. 42. No. 1. P. 27 – 35.
12. Zhou Y., Engelberg D. Accessing the full spectrum of corrosion behaviour of tempered type 420 stainless steel / Mater. Corrosion. 2021. Vol. 72. No. 11. P. 1718 – 1729. DOI: 10.1002/maco.202112442
13. Bonagani S., Bathula V., Kain V. Influence of tempering treatment on microstructure and pitting corrosion of 13 wt. % Cr martensitic stainless steel / Corrosion Sci. 2018. Vol. 131. P. 340 – 354.
14. Kostina M. V., Rigina L. G., Kostina V. S., et al. Corrosion-resistant steels based on Fe – ~13% Cr: Heat treatment, corrosion and wear resistance / Izv. Vuzov. 2023. Vol. 66. No. 1. P. 8 – 26 [in Russian]. DOI: 10.17073/0368-0797-2023-1-8-26
15. Orekhov N. G., Chabina E. B., Zhegina I. P., et al. Influence of impurities on the fracture mechanism of high-strength steels / Metalloved. Term. Obrab. Met. 1995. No. 1. P. 15 – 19 [in Russian].
16. Shtremel M. A. Fracture. — Moscow: MISIS, 2014. — 670 p. [in Russian].
17. Grin E. A. Analysis of the mechanisms of the influence of aqueous environments on the cyclic crack resistance of steels / Industr. Lab. Mater. Diagn. 2016. Vol. 82. No. 7. P. 45 – 55 [in Russian].
18. Maznichevsky A. N., Goikhenberg Yu. N., Sprikut R. V. Electron microscopic studies of excess phase precipitates affecting the intergranular corrosion of chromium-nickel austenitic steels / Fiz. Met. Metalloved. 2021. Vol. 122. No. 4. P. 388 – 395 [in Russian]. DOI: 10.31857/s0015323021030116
19. Bösing I., Cramer L., Steinbacher M., et al. Influence of heat treatment on the microstructure and corrosion resistance of martensitic stainless steel / AIP Advances. 2019. Vol. 9. No. 6. P. 065317. DOI: 10.1063/1.5094615
20. Rosemann P., Müller C., Kauss N., et al. Einfluss der Wärmebehandlung auf Mikrostruktur und Korrosions-verhalten kohlenstoffhaltiger nichtrostender Stähle. Tagungsband zum 17 / Werkstofftechnischen Kolloquium in Chemnitz. — Chemnitz: Techn. Univ., 2014. P. 103 – 112.
Review
For citations:
Mordovina Yu.S., Chernigin M.A., Fedosova M.E. Assessing of resistance to intercrystalline corrosion of 20Kh13 and 40Kh13 steels. Industrial laboratory. Diagnostics of materials. 2025;91(10):34-41. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-10-34-41






























