Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of the effect of pre-magnetic treatment on the thermoplastic effect in aluminum alloys with ferromagnetic inclusions

https://doi.org/10.26896/1028-6861-2025-91-10-42-49

Abstract

The paper presents the results of studying the influence of preliminary magnetic treatment on the thermoplastic effect in aluminum alloys with ferromagnetic inclusions. The samples were exposed to a constant magnetic field with subsequent creep tests under uniaxial tension. Scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction analysis were used to analyze the alloy morphology. Specific heat and work of plastic deformation were calculated based on thermomechanical data. It was revealed that there is a relationship between magnetostriction, mechanical stresses at the matrix-inclusion boundary, and energy dissipation during deformation. It was found that preliminary magnetic exposure of samples increases the specific heat by 5 times (from 0.05 to 0.26 J/m3) and the work of deformation by 44 % (from 0.72 to 1.04 J/m3). The increase in the Taylor coefficient (from 0.07 to 0.25) and latent energy (from 0.67 to 0.78 J/m3) is associated with the redistribution of stresses at the matrix-inclusion boundary due to magnetostriction. When assessing the mechanical stresses caused by magnetostriction, the obtained values exceed the yield strength of the matrix, which explains the increase in energy dissipation. The results obtained can be used in the development of «smart» materials with programmable properties due to variations in the composition, size and concentration of the magnetoactive filler in the non-magnetic matrix.

About the Authors

D. E. Pshonkin
Moscow Polytechnic University
Russian Federation

Danila E. Pshonkin.

38, ul. Bolshaya Semenovskaya, Moscow, 107023.



M. V. Koryachko
Moscow Polytechnic University; MIREA — Russian Technological University
Russian Federation

Marina V. Koryachko.

38, ul. Bolshaya Semenovskaya, Moscow, 107023;

78, prosp. Vernadskogo, Moscow, 119454.



References

1. Li X., Tang X., Li M., et al. Relaxation of residual stress in aluminum alloy rings by pulsed high magnetic field: Relieving mechanisms and performance evaluation / J. Mater. Process. Technol. 2025. Vol. 338. 118778. DOI: 10.1016/j.jmatprotec.2025.118778

2. Jin T., Wang H., Chen Yi., et al. Evolution of nanoheterogeneities and correlative influence on magnetostriction in FeGa-based magnetostrictive alloys / Materials Characterization. 2022. Vol. 186. 111780. DOI: 10.1016/j.matchar.2022.111780

3. Molotskii M. Theoretical basis for electro- and magnetoplasticity / Mater. Sci. Eng.: A. 2000. Vol. 287. No. 2. P. 248 – 258. DOI: 10.1016/s0921-5093(00)00782-6

4. Skvortsov A., Morgunov R., Pshonkin D., et al. «Magnetic Memory» in plasticity of an Aluminum alloy with iron inclusions / Phys. Solid State. 2019. Vol. 61. P. 1023 – 1029. DOI: 10.1134/s1063783419060246

5. Melekhin N. V., Tyukalov A. D., Bobrov A. A., et al. High-speed plastic deformation of aluminum during Taylor method testing / Industr. Lab. Mater. Diagn. 2024. Vol. 90. No. 5. P. 46 – 52 [in Russian]. DOI: 10.26896/1028-6861-2024-90-5-46-52

6. Anoshkin A. N., Golovin D. V., Osokin V. M., et al. Modeling the process of thermal non-destructive testing for aircraft equipment composite parts / Vestn. PNIPU. 2019. No. 59. P. 51 – 60 [in Russian]. DOI: 10.15593/2224-9982/2019.59.05

7. Golovanov Yu. V., Khasanov I. Kh. Thermal imaging method for monitoring the technical condition of a passenger car body / Vestn. OGU. 2014. Vol. 171. No. 10. P. 54 – 49 [in Russian].

8. Karpov D. F. The active method of control the thermal conductivity of building materials and products / Vestn. BGTU. 2019. No. 7. P. 57 – 62 [in Russian]. DOI: 10.34031/article_5d35d0b79c34c5.75173950

9. Galaktionov I., Nikitin A., Sheldakova J., et al. Focusing of a laser beam passed through a moderately scattering medium using phase-only spatial light modulator / Photonics. 2022. Vol. 9. No. 5. P. 296. DOI: 10.3390/photonics9050296

10. Galaktionov I. V., Kudryashov A. V., Sheldakova Yu. V., et al. Measurement and correction of the wavefront of the laser light in a turbid medium / Quantum Electronics. 2017. Vol. 47. No. 1. P. 32 – 37. DOI: 10.1070/qel16061

11. Toporovsky V., Samarkin V., Kudryashov A., et al. Investigation of PZT materials for reliable piezostack deformable mirror with modular design / Micromachines. 2023. Vol. 14. No. 11. P. 2004. DOI: 10.3390/mi14112004

12. Skvortsov A., Pshonkin D., Kunitsyna E., et al. Softening of the Al – Mg – Si – Fe alloy under magnetostriction of FeAl microinclusions / J. Appl. Phys. 2019. Vol. 125. No. 2. 023903. DOI: 10.1063/1.5064448

13. Mounir Fr., Nikolaev V., Skvortsov A., et al. The effect of magnetic fields on the mechanical properties of an aluminum alloy with iron-based inclusions / J. Magnetism Magnet. Mater. 2024. Vol. 589. No. 2. 171532. DOI: 10.1016/j.jmmm.2023.171532

14. Li X., Scherf A., Heilmaier M., et al. The Al-Rich part of the Fe-Al phase diagram / J. Phase Equilibria Diffusion. 2016. Vol. 37. No. 2. P. 162 – 173. DOI: 10.1007/s11669-015-0446-7

15. Buschow K. H. J., de Boer F. R. Soft-Magnetic Materials / Phys. Magnetism Magnet. Mater. 2003. Ch. 14. P. 147 – 163. DOI: 10.1007/0-306-48408-0_14

16. Panin V. E., Surikova N. S., Elsukova T. F., et al. Grain boundary sliding and rotational mechanisms of intragranular deformation at different creep stages of high-purity aluminum polycrystals at various temperatures and stresses / Mater. Sci. Eng.: A. 2018. Vol. 733. P. 276 – 284. DOI: 10.1016/j.msea.2018.07.038

17. Kostina A. A., Bayandin Yu. V., Plekhov O. A. Modeling of the process of energy accumulation and dissipation during plastic deformation of metals / Phys. Mesomech. 2014. Vol. 17. No. 1. P. 43 – 49 [in Russian].

18. Zimin B. A., Sventitskaya V. E., Smirnov I. V., et al. Influence of Strain Rate on Heat Release under Quasi-Static Stretching of Metals. Experiment / Phys. Solid State. 2018. Vol. 60. P. 758 – 763. DOI: 10.1134/s1063783418040352

19. Bezyazychny V. F., Drapkin B. M., Prokofiev M. A., et al. Study of the deformation energy stored in metal during pressing of a ball indenter / Industr. Lab. Mater. Diagn. 2005. Vol. 71. No. 4. P. 32 – 35 [in Russian].


Review

For citations:


Pshonkin D.E., Koryachko M.V. Study of the effect of pre-magnetic treatment on the thermoplastic effect in aluminum alloys with ferromagnetic inclusions. Industrial laboratory. Diagnostics of materials. 2025;91(10):42-49. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-10-42-49

Views: 39


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)