Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

High-performance liquid chromatography determination of polycyclic aromatic hydrocarbons in soils using the QuEChERS technique

https://doi.org/10.26896/1028-6861-2025-91-11-26-33

Abstract

A method for the determination of 18 polycyclic aromatic hydrocarbons (PAHs) in soils and sediments has been developed, combining the QuEChERS technique of analyte extraction with subsequent determination by HPLC with fluorescence and diode array detection (FLD/DAD). The limits of HPLC-FLD/DAD quantification of analytes were established, which amounted to 0.015 – 1.0 μg/kg while recoveries were 80 – 100%. The relative standard deviations of the repeatability and reproducibility of the PAHs determination method ranged from 1.5 to 10 and from 2.3 to 12%, respectively. The metrological characteristics of the proposed approach were compared with the corresponding values for the PAHs determination by gas chromatography – mass spectrometry also in combination with the QuEChERS technique: the quantification limits of a number of PAHs have been reduced by two orders of magnitude. An optimized scheme for the determination of PAHs in soils has been tested in the analysis sand samples collected on the Black Sea coast after the emergency flooding of fuel oil tankers. PAHs of various molecular weights were identified: 2-methylnaphthalene, phenanthrene, fluoranthene, pyrene were predominant among the light PAHs, while the heavy PAHs were primarily represented by triphenylene, chrysene, and benzo[b]fluoranthene. The total content of certain PAHs in the sand samples did not exceed 10 μg/kg, close to the level of background pollution.

About the Authors

S. K. Ovsepyan
Kuban State University
Russian Federation

Suzanna K. Ovsepyan 

149, Stavropol’skaya ul., Krasnodar, 350040



Z. A. Temerdashev
Kuban State University
Russian Federation

Zaual A. Temerdashev 

149, Stavropol’skaya ul., Krasnodar, 350040



T. G. Tsyupko
Kuban State University
Russian Federation

Tatyana G. Tsyupko

149, Stavropol’skaya ul., Krasnodar, 350040



References

1. Imam A., Suman S. K., Ghosh D., Kanaujia P. K. Analytical approaches used in monitoring the bioremediation of hydrocarbons in petroleum-contaminated soil and sludge / Trends Anal. Chem. 2019. Vol. 118. P. 50 – 64. DOI: 10.1016/j.trac.2019.05.023

2. Soursou V., Campo J., Pico Y. Revisiting the analytical determination of PAHs in environmental samples: An update on recent advances / Trends Environ. Anal. Chem. 2023. Vol. 37. e00195. DOI: 10.1016/j.teac.2023.e00195

3. Noro K., Omagari R., Ito K., et al. Sampling, pretreatment, instrumental analysis, and observed concentrations of polycyclic aromatic hydrocarbons, polychlorinated naphthalenes, and halogenated polycyclic aromatic hydrocarbons: a review / Trends Anal. Chem. 2023. Vol. 169. 117384. DOI: 10.1016/j.trac.2023.117384

4. Lau E. V., Gan S., Ng H. K. Extraction techniques for polycyclic aromatic hydrocarbons in soils / Int. J. Anal. Chem. 2010. Vol. 2010. 398381. DOI: 10.1155/2010/398381

5. Perestrelo R., Silva P., Porto-Figueira P., et al. QuEChERS — fundamentals, relevant improvements, applications and future trends / Anal. Chim. Acta. 2019. Vol. 1070. P. 1 – 28. DOI: 10.1016/j.aca.2019.02.036

6. Santana-Mayor A., Rodríguez-Ramos R., Herrera-Herrera A. V., et al. Updated overview of QuEChERS applications in food, environmental and biological analysis (2020 – 2023) / Trends Anal. Chem. 2023. Vol. 169. 117375. DOI: 10.1016/j.trac.2023.117375

7. Godfrey A. R., Dunscombe J., Gravell A., et al. Use of QuEChERS as a manual and automated high-throughput protocol for investigating environmental matrices / Chemosphere. 2022. Vol. 308. 136313. DOI: 10.1016/j.chemosphere.2022.136313

8. González Curbelo M. Á., Socas-Rodríguez B., Herrera-Herrera A., et al. Evolution and applications of the QuEChERS method / Trends Anal. Chem. 2015. Vol. 71. P. 169 – 185. DOI: 10.1016/j.trac.2015.04.012

9. Anastassiades M., Lehotay S. J., Stajnbaher D., Schenck F. J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and «dispersive solid-phase extraction» for the determination of pesticide residues in produce / J. AOAC Int. 2003. Vol. 86. P. 412 – 431. DOI: 10.1093/jaoac/86.2.412

10. Wang D., Ma J., Li H., Zhang X. Concentration and potential ecological risk of PAHs in different layers of soil in the petroleum-contaminated areas of the loess plateau, China / Int. J. Environ. Res. Public Health. 2018. Vol. 15. 1785. DOI: 10.3390/ijerph15081785

11. Salem F. B., Said O. B., Duran R., Monperrus M. Validation of an adapted QuEChERS method for the simultaneous analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls and organochlorin pesticides in sediment by gas chromatography-mass spectrometry / Bull. Environ. Contam. Toxicol. 2016. Vol. 96. P. 678 – 684. DOI: 10.1007/s00128-016-1770-2

12. Nikolic J. S., Mitic V. D., Stankov Jovanovic V. P., et al. Novel sorbent and solvent combination for QuEChERS soil sample preparation for the determination of polycyclic aromatic hydrocarbons by gas chromatography – mass spectrometry / Anal. Lett. 2018. Vol. 51. P. 1087 – 1107. DOI: 10.1080/00032719.2017.1367007

13. Słowik-Borowiec M., Szpyrka E., Ksiazek-Trela P., Podbielska M. Simultaneous determination of multi-class pesticide residues and PAHs in plant material and soil samples using the optimized QuEChERS method and tandem mass spectrometry analysis / Molecules. 2022. Vol. 27. 2140. DOI: 10.3390/molecules27072140

14. Miossec C., Lanceleur L., Monperrus M. Adaptation and validation of QuEChERS method for the simultaneous analysis of priority and emerging pollutantsin sediments by gas chromatography mass spectrometry / Int. J. Environ. Anal. Chem. 2018. Vol. 98. P. 695 – 708. DOI: 10.1080/03067319.2018.1496245

15. Wise S. A., Sander L. C., Schantz M. M. Analytical methods for determination of polycyclic aromatic hydrocarbons (PAHs) — a historical perspective on the 16 U.S. EPA priority pollutant PAHs / Polycyclic Aromat. Compd. 2015. Vol. 35. P. 187 – 247. DOI: 10.1080/10406638.2014.970291

16. Ahad J. M. E., Macdonald R., Parrot J., et al. Polycyclic aromatic compounds (PACs) in the Canadian environment: a review of sampling techniques, strategies and instrumentation / Environ. Pollut. 2020. Vol. 266. 114988. DOI: 10.1016/j.envpol.2020.114988

17. Santos F. J., Galceran M. T. Modern developments in gas chromatography — mass spectrometry-based environmental analysis / J. Chromatogr. A. 2003. Vol. 1000. P. 125 – 151. DOI: 10.1016/s0021-9673(03)00305-4

18. Poster D. L., Schantz M. M., Sander L. C., Wise S. A. Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: a critical review of gas chromatographic (GC) methods / Anal. Bioanal. Chem. 2006. Vol. 386. P. 859 – 881. DOI: 10.1007/s00216-006-0771-0

19. Mogashane T. M., Mokoena L., Tshilongo J. A review on recent developments in the extraction and identification of polycyclic aromatic hydrocarbons from environmental samples / Water. 2024. Vol. 16. 2520. DOI: 10.3390/w16172520

20. Temerdashev Z. A., Ovsepyan S. K., Musorina T. N., Korpakova I. G. Features of preconcentration and determination of PAHs in soils with high organic matter content by gas chromatography – mass spectrometry / J. Anal. Chem. 2025. Vol. 80. No. 8. P. 1389 – 1401. DOI: 10.1134/s1061934825700662

21. Bai Y., Meng W., Xu J., et al. Occurrence, distribution, environmental risk assessment and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in water and sediments of the Liaohe River basin, China / Bull. Environ. Contam. Toxicol. 2014. Vol. 93. P. 744 – 751. DOI: 10.1007/s00128-014-1390-7

22. Agapov S. A., Afanasyev D. F., Aleksandrova Z. V., et al. The oil spill accident in the Kerch strait: its effects on the water ecosystems. — Rostov-on-Don: AzNIIRKH, 2008. — 232 p. [in Russian].

23. Kumari A., Upadhyay V., Kumar S. A critical insight into occurrence and fate of polycyclic aromatic hydrocarbons and their green remediation approaches / Chemosphere. 2023. Vol. 329. 138579. DOI: 10.1016/j.chemosphere.2023.138579

24. Robin S. L., Marchan C. Polycyclic aromatic hydrocarbons (PAHs) in mangrove ecosystems: a review / Environ. Pollut. 2022. Vol. 311. 119959. DOI: 10.1016/j.envpol.2022.119959

25. Srogi K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review / Environ. Chem. Lett. 2007. Vol. 5. P. 169 – 195. DOI: 10.1007/s10311-007-0095-0

26. Zhidkin A. P., Gennadiev A. N., Koshovskii T. S. Input and behavior of polycyclic aromatic hydrocarbons in arable, fallow, and forest soils of the taiga zone (Tver oblast) / Eurasian Soil Sci. 2017. Vol. 50. P. 296 – 304. DOI: 10.1134/s1064229317030139

27. Wu L., He Q., Zhang J., et al. QuEChERS with ultrasound-assisted extraction combined with high-performance liquid chromatography for the determination of 16 polycyclic aromatic hydrocarbons in sediment / J. AOAC Int. 2021. Vol. 104. P. 1255 – 1263. DOI: 10.1093/jaoacint/qsab023

28. Brenkus M., Tolgyessy P., Koperova Navojova V., et al. Determination of polycyclic aromatic hydrocarbons, phthalate esters, alkylphenols and alkyphenol ethoxylates in sediment using simultaneous focused ultrasound solid-liquid extraction and dispersive solid-phase extraction clean-up followed by liquid chromatography / Microchem. J. 2024. Vol. 200. 110299. DOI: 10.1016/j.microc.2024.110299

29. Dai C., Han Y., Duan Y., et al. Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments / Environ. Res. 2022. Vol. 205. 112423. DOI: 10.1016/j.envres.2021.112423

30. Maliszewska-Kordybach B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination / Appl. Geochem. 1996. Vol. 11. P. 121 – 127. DOI: 10.1016/0883-2927(95)00076-3


Review

For citations:


Ovsepyan S.K., Temerdashev Z.A., Tsyupko T.G. High-performance liquid chromatography determination of polycyclic aromatic hydrocarbons in soils using the QuEChERS technique. Industrial laboratory. Diagnostics of materials. 2025;91(11):26-33. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-11-26-33

Views: 100


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)