Research of the monochromaticity of x-ray radiation in a wide range of energies
https://doi.org/10.26896/1028-6861-2025-91-11-49-55
Abstract
For quantitative analysis of X-ray absorption in the range of wavelengths from few to quarter part of angstrom (which approximately correspond to energies from 5 to 50 keV) and X-ray detectors calibration the source of monochromatic radiation is necessary. We present the studies of the monochromator setup constructed for the wide range of energies. The principle of the developed device is based on the X-ray diffraction effect. Pyrolytic graphite single crystal is applied as a diffracting element in the setup. When it is rotated to the assigned angle the monochromatic part is selected from the bremsstrahlung spectrum of the X-ray tube. During the testing procedures it was revealed that the presented system provides a monochromaticity of X-ray beam in the range of energies 15 – 100 keV at level of 1.5 – 9% (suitable for calibration and testing of detectors). It is also shown that available laboratory components applicable for generating tunable monochromatic radiation. The obtained results can be used in defectoscopy, tomography and other tasks which require spectral-selective X-ray analysis.
About the Authors
Phi H.B. TruongRussian Federation
Truong H. B. Phi
Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research
20, ul. Zholio-Kyuri, Dubna, Moscow obl., 141980, Russia;
10 Dao Tan, Ba Dinh, Hanoi, Vietnam
B. S. Roshchin
Russian Federation
Boris S. Roshchin
Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics
59, Leninsky prosp., Moscow, 119333
S. Abou El-Azm
Russian Federation
Abou El-Azm
Dzhelepov Laboratory of Nuclear Problems
20, ul. Zholio-Kyuri, Dubna, Moscow obl., 141980
Yu. M. Dymshits
Russian Federation
Yuri M. Dymshits
Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics
59, Leninsky prosp., Moscow, 119333
V G. Kruchonok
Russian Federation
Vladimir G. Kruchonok
Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research
20, ul. Zholio-Kyuri, Dubna, Moscow obl., 141980, Russia;
68 – 2, prosp. Nezavisimosti, Minsk, 220072, Belarus
G. K. Lavrov
Russian Federation
Georgy K. Lavrov
Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research
20, ul. Zholio-Kyuri, Dubna, Moscow obl., 141980;
19, Universitetskaya ul., Dubna, Moskovskaya obl., 141982
A. V. Lapkin
Russian Federation
Aleksandr V. Lapkin
Dzhelepov Laboratory of Nuclear Problems
20, ul. Zholio-Kyuri, Dubna, Moscow obl., 141980
S. A. Malinin
Russian Federation
Sergey A. Malinin
Dzhelepov Laboratory of Nuclear Problems
20, ul. Zholio-Kyuri, Dubna, Moscow obl., 141980
V. A. Rozhkov
Russian Federation
Vladislav A. Rozhkov
Dzhelepov Laboratory of Nuclear Problems
20, ul. Zholio-Kyuri, Dubna, Moscow obl., 141980
R V. Sotensky
Russian Federation
Rostislav V. Sotensky
Dzhelepov Laboratory of Nuclear Problems
20, ul. Zholio-Kyuri, Dubna, Moscow obl., 141980
V. E. Asadchikov
Russian Federation
Victor E. Asadchikov
Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics
59, Leninsky prosp., Moscow, 119333
G. A. Shelkov
Russian Federation
Georgy A. Shelkov
Dzhelepov Laboratory of Nuclear Problems
20, ul. Zholio-Kyuri, Dubna, Moscow obl., 141980
References
1. Kheiker D. M. Single-crystal X-ray diffractometry. — Leningrad: Mashinostroenie, 1973. — 256 p. [in Russian].
2. Bowen D. K., Tanner B. K. High resolution X-ray diffractometry and topography. — CRC Press, 2019. — 264 p.
3. Seidler G. T., Mortensen D. R., Remesnik A. J., et al. A laboratory-based hard X-ray monochromator for high-resolution X-ray emission spectroscopy and X-ray absorption near edge structure measurements / Rev. Sci. Instrum. 2014. Vol. 85. P. 113906. DOI: 10.1063/1.4901599
4. Astolfo A., Endrizzi M., Vittoria F., et al. Large field of view, fast and low dose multimodal phase-contrast imaging at high X-ray energy / Sci. Rep. 2017. Vol. 7. P. 2187. DOI: 10.1038/s41598-017-02412-w
5. Kalender W. A. Computed tomography. Fundamentals, system technology, image quality, applications. — Wiley, 2011. — 373 p.
6. Mele F., Quercia J., Abbene L., et al. Advances in high-energy-resolution CdZnTe linear array pixel detectors with fast and low noise readout electronics / Sensors. 2023. Vol. 23. No. 4. P. 2167. DOI: 10.3390/s23042167
7. Chiriotti S., Barten R., Bergamaschi A., et al. High-spatial resolution measurements with a GaAs:Cr sensor using the charge integrating MÖNCH detector with a pixel pitch of 25 μm / J. Instr. 2022. Vol. 17. No. 04. P. P04007. DOI: 10.1088/1748-0221/17/04/p04007
8. Aad G., Aakvaag E., Abbott B., et al. Sensor response and radiation damage effects for 3D pixels in the ATLAS IBL detector / J. Instr. 2024. Vol. 19. No. 10. P. P10008. DOI: 10.1088/1748-0221/19/10/p10008
9. Gustavino G., Allport P., Asensi I., et al. Timing performance of radiation hard MALTA monolithic pixel sensors / J. Instr. 2023. Vol. 18. P. C03011. DOI: 10.1088/1748-0221/18/03/c03011
10. Sonneveld J. ITS3: a truly cylindrical inner tracker for ALICE / Proc. of the 11th Int. Conf. on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions. — Aschaffenburg, Germany, 2023. DOI: 10.22323/1.438.0077
11. Cadoux F., Cardella R., Iacobucci G., et al. The 100μPET project: a small-animal PET scanner for ultra-high resolution molecular imaging with monolithic silicon pixel detectors / Nucl. Inst. Meth. Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 2023. Vol. 1048. P. 167952. DOI: 10.1016/j.nima.2022.167952
12. Greffier J., Viry A., Robert A., et al. Photon-counting CT systems: a technical review of current clinical possibilities / Diagn. Intervent. Imaging. 2025. Vol. 106. No. 2. P. 53 – 59. DOI: 10.1016/j.diii.2024.09.002
13. Sotenskii R. V., Rozhkov V. A., Shashurin D. A., et al. Novel algorithm for qualitative and quantitative material analysis by the K-edges for photon-counting computed tomography / J. Instr. 2024. Vol. 19. No. 4. P. 04009. DOI: 10.1088/1748-0221/19/04/p04009
14. Hagino K., Hayashida M., Kohmura T., et al. Single event tolerance of X-ray silicon-on-insulator pixel sensors / J. Astron. Telesc. Instr. Syst. 2022. Vol. 8. No. 4. P. 046001. DOI: 10.1117/1.jatis.8.4.046001
15. Takahashi S., Arimoto M., Goto H., et al. Radiation tolerance test and performance verification of pnCCD at high temperatures for future satellite mission HiZ-GUNDAM / Nucl. Inst. Meth. Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 2024. Vol. 1064. P. 169413. DOI: 10.1016/j.nima.2024.169413
16. Feruglio A., Biesuz N., Bolzonella R., et al. Timepix4 calibration and energy resolution evaluation with fluorescence photons / Il Nuovo Cimento. 2024. Vol. 47C. P. 314. DOI: 10.1393/ncc/i2024-24314-6
17. Delogu P., Biesuz N., Bolzonella R., et al. Validation of Timepix4 energy calibration procedures with synchrotron X-ray beams / Nucl. Inst. Meth. Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 2024. Vol. 1068. P. 169716. DOI: 10.1016/j.nima.2024.169716
18. X-ray dynamical diffraction data on the Web. https://x-server. gmca.aps.anl.gov/cgi/www_form.exe?template=x0h_form.htm (accessed 03/19/2025).
19. Asadchikov V. E., Babak V. G., Buzmakov A. V., et al. X-ray diffractometer with a mobile emitter-detector system / Instr. Exp. Techniques. 2005. Vol. 48. No. 3. P. 364 – 372. DOI: 10.1007/s10786-005-0064-4
20. X123 User Manual. Amptek Inc. https://www.amptek.com/ products/x-ray-detectors (accessed 04/05/2025).
21. Poikela T., Plosila J., Westerlund T., et al. Timepix3: a 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout / J. Instr. 2014. Vol. 9. No. 05. P. C05013. DOI: 10.1088/1748-0221/9/05/c05013
22. Smolyanskiy P., Burian P., Sitarz M., et al. Experimental determination of the charge carrier transport models for improving the simulation of the HR GaAs:Cr detectors’ response / Sensors. 2023. Vol. 23. P. 6886. DOI: 10.3390/s23156886
23. Redus R. H., Pantazis J. A., Pantazis T. J., et al. Characterization of CdTe detectors for quantitative X-ray spectroscopy / IEEE Trans. Nucl. Sci. 2009. Vol. 56. No. 4. P. 2524 – 2532. DOI: 10.1109/tns.2009.2024149
Review
For citations:
Truong P.H., Roshchin B.S., Abou El-Azm S., Dymshits Yu.M., Kruchonok V.G., Lavrov G.K., Lapkin A.V., Malinin S.A., Rozhkov V.A., Sotensky R.V., Asadchikov V.E., Shelkov G.A. Research of the monochromaticity of x-ray radiation in a wide range of energies. Industrial laboratory. Diagnostics of materials. 2025;91(11):49-55. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-11-49-55






























