Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Research of the monochromaticity of x-ray radiation in a wide range of energies

https://doi.org/10.26896/1028-6861-2025-91-11-49-55

Abstract

For quantitative analysis of X-ray absorption in the range of wavelengths from few to quarter part of angstrom (which approximately correspond to energies from 5 to 50 keV) and X-ray detectors calibration the source of monochromatic radiation is necessary. We present the studies of the monochromator setup constructed for the wide range of energies. The principle of the developed device is based on the X-ray diffraction effect. Pyrolytic graphite single crystal is applied as a diffracting element in the setup. When it is rotated to the assigned angle the monochromatic part is selected from the bremsstrahlung spectrum of the X-ray tube. During the testing procedures it was revealed that the presented system provides a monochromaticity of X-ray beam in the range of energies 15 – 100 keV at level of 1.5 – 9% (suitable for calibration and testing of detectors). It is also shown that available laboratory components applicable for generating tunable monochromatic radiation. The obtained results can be used in defectoscopy, tomography and other tasks which require spectral-selective X-ray analysis.

About the Authors

Phi H.B. Truong
Joint Institute for Nuclear Research; Institute of Physics, Vietnam Academy of Science and Technology
Russian Federation

Truong H. B. Phi

Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research 

20, ul. Zholio-Kyuri, Dubna, Moscow obl., 141980, Russia;
10 Dao Tan, Ba Dinh, Hanoi, Vietnam



B. S. Roshchin
NRC «Kurchatov Institute»
Russian Federation

Boris S. Roshchin

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

59, Leninsky prosp., Moscow, 119333



S. Abou El-Azm
Joint Institute for Nuclear Research
Russian Federation

Abou El-Azm

Dzhelepov Laboratory of Nuclear Problems

20, ul. Zholio-Kyuri, Dubna, Moscow obl., 141980



Yu. M. Dymshits
Yuri M. DymshitsNRC «Kurchatov Institute»
Russian Federation

Yuri M. Dymshits

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

59, Leninsky prosp., Moscow, 119333



V G. Kruchonok
Joint Institute for Nuclear Research; Institute of Physics, National Academy of Sciences of Belarus
Russian Federation

Vladimir G. Kruchonok

Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research

20, ul. Zholio-Kyuri, Dubna, Moscow obl., 141980, Russia;
68 – 2, prosp. Nezavisimosti, Minsk, 220072, Belarus 



G. K. Lavrov
Joint Institute for Nuclear Research; Dubna State University
Russian Federation

Georgy K. Lavrov

Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research

20, ul. Zholio-Kyuri, Dubna, Moscow obl., 141980;
19, Universitetskaya ul., Dubna, Moskovskaya obl., 141982

 



A. V. Lapkin
Joint Institute for Nuclear Research
Russian Federation

Aleksandr V. Lapkin 

Dzhelepov Laboratory of Nuclear Problems 

20, ul. Zholio-Kyuri, Dubna, Moscow obl., 141980



S. A. Malinin
Joint Institute for Nuclear Research
Russian Federation

Sergey A. Malinin 

Dzhelepov Laboratory of Nuclear Problems 

20, ul. Zholio-Kyuri, Dubna, Moscow obl., 141980



V. A. Rozhkov
Joint Institute for Nuclear Research
Russian Federation

Vladislav A. Rozhkov

Dzhelepov Laboratory of Nuclear Problems 

20, ul. Zholio-Kyuri, Dubna, Moscow obl., 141980



R V. Sotensky
Joint Institute for Nuclear Research
Russian Federation

Rostislav V. Sotensky

Dzhelepov Laboratory of Nuclear Problems 

20, ul. Zholio-Kyuri, Dubna, Moscow obl., 141980



V. E. Asadchikov
NRC «Kurchatov Institute»
Russian Federation

Victor E. Asadchikov 

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics 

59, Leninsky prosp., Moscow, 119333



G. A. Shelkov
Joint Institute for Nuclear Research
Russian Federation

Georgy A. Shelkov

Dzhelepov Laboratory of Nuclear Problems 

20, ul. Zholio-Kyuri, Dubna, Moscow obl., 141980



References

1. Kheiker D. M. Single-crystal X-ray diffractometry. — Leningrad: Mashinostroenie, 1973. — 256 p. [in Russian].

2. Bowen D. K., Tanner B. K. High resolution X-ray diffractometry and topography. — CRC Press, 2019. — 264 p.

3. Seidler G. T., Mortensen D. R., Remesnik A. J., et al. A laboratory-based hard X-ray monochromator for high-resolution X-ray emission spectroscopy and X-ray absorption near edge structure measurements / Rev. Sci. Instrum. 2014. Vol. 85. P. 113906. DOI: 10.1063/1.4901599

4. Astolfo A., Endrizzi M., Vittoria F., et al. Large field of view, fast and low dose multimodal phase-contrast imaging at high X-ray energy / Sci. Rep. 2017. Vol. 7. P. 2187. DOI: 10.1038/s41598-017-02412-w

5. Kalender W. A. Computed tomography. Fundamentals, system technology, image quality, applications. — Wiley, 2011. — 373 p.

6. Mele F., Quercia J., Abbene L., et al. Advances in high-energy-resolution CdZnTe linear array pixel detectors with fast and low noise readout electronics / Sensors. 2023. Vol. 23. No. 4. P. 2167. DOI: 10.3390/s23042167

7. Chiriotti S., Barten R., Bergamaschi A., et al. High-spatial resolution measurements with a GaAs:Cr sensor using the charge integrating MÖNCH detector with a pixel pitch of 25 μm / J. Instr. 2022. Vol. 17. No. 04. P. P04007. DOI: 10.1088/1748-0221/17/04/p04007

8. Aad G., Aakvaag E., Abbott B., et al. Sensor response and radiation damage effects for 3D pixels in the ATLAS IBL detector / J. Instr. 2024. Vol. 19. No. 10. P. P10008. DOI: 10.1088/1748-0221/19/10/p10008

9. Gustavino G., Allport P., Asensi I., et al. Timing performance of radiation hard MALTA monolithic pixel sensors / J. Instr. 2023. Vol. 18. P. C03011. DOI: 10.1088/1748-0221/18/03/c03011

10. Sonneveld J. ITS3: a truly cylindrical inner tracker for ALICE / Proc. of the 11th Int. Conf. on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions. — Aschaffenburg, Germany, 2023. DOI: 10.22323/1.438.0077

11. Cadoux F., Cardella R., Iacobucci G., et al. The 100μPET project: a small-animal PET scanner for ultra-high resolution molecular imaging with monolithic silicon pixel detectors / Nucl. Inst. Meth. Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 2023. Vol. 1048. P. 167952. DOI: 10.1016/j.nima.2022.167952

12. Greffier J., Viry A., Robert A., et al. Photon-counting CT systems: a technical review of current clinical possibilities / Diagn. Intervent. Imaging. 2025. Vol. 106. No. 2. P. 53 – 59. DOI: 10.1016/j.diii.2024.09.002

13. Sotenskii R. V., Rozhkov V. A., Shashurin D. A., et al. Novel algorithm for qualitative and quantitative material analysis by the K-edges for photon-counting computed tomography / J. Instr. 2024. Vol. 19. No. 4. P. 04009. DOI: 10.1088/1748-0221/19/04/p04009

14. Hagino K., Hayashida M., Kohmura T., et al. Single event tolerance of X-ray silicon-on-insulator pixel sensors / J. Astron. Telesc. Instr. Syst. 2022. Vol. 8. No. 4. P. 046001. DOI: 10.1117/1.jatis.8.4.046001

15. Takahashi S., Arimoto M., Goto H., et al. Radiation tolerance test and performance verification of pnCCD at high temperatures for future satellite mission HiZ-GUNDAM / Nucl. Inst. Meth. Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 2024. Vol. 1064. P. 169413. DOI: 10.1016/j.nima.2024.169413

16. Feruglio A., Biesuz N., Bolzonella R., et al. Timepix4 calibration and energy resolution evaluation with fluorescence photons / Il Nuovo Cimento. 2024. Vol. 47C. P. 314. DOI: 10.1393/ncc/i2024-24314-6

17. Delogu P., Biesuz N., Bolzonella R., et al. Validation of Timepix4 energy calibration procedures with synchrotron X-ray beams / Nucl. Inst. Meth. Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 2024. Vol. 1068. P. 169716. DOI: 10.1016/j.nima.2024.169716

18. X-ray dynamical diffraction data on the Web. https://x-server. gmca.aps.anl.gov/cgi/www_form.exe?template=x0h_form.htm (accessed 03/19/2025).

19. Asadchikov V. E., Babak V. G., Buzmakov A. V., et al. X-ray diffractometer with a mobile emitter-detector system / Instr. Exp. Techniques. 2005. Vol. 48. No. 3. P. 364 – 372. DOI: 10.1007/s10786-005-0064-4

20. X123 User Manual. Amptek Inc. https://www.amptek.com/ products/x-ray-detectors (accessed 04/05/2025).

21. Poikela T., Plosila J., Westerlund T., et al. Timepix3: a 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout / J. Instr. 2014. Vol. 9. No. 05. P. C05013. DOI: 10.1088/1748-0221/9/05/c05013

22. Smolyanskiy P., Burian P., Sitarz M., et al. Experimental determination of the charge carrier transport models for improving the simulation of the HR GaAs:Cr detectors’ response / Sensors. 2023. Vol. 23. P. 6886. DOI: 10.3390/s23156886

23. Redus R. H., Pantazis J. A., Pantazis T. J., et al. Characterization of CdTe detectors for quantitative X-ray spectroscopy / IEEE Trans. Nucl. Sci. 2009. Vol. 56. No. 4. P. 2524 – 2532. DOI: 10.1109/tns.2009.2024149


Review

For citations:


Truong P.H., Roshchin B.S., Abou El-Azm S., Dymshits Yu.M., Kruchonok V.G., Lavrov G.K., Lapkin A.V., Malinin S.A., Rozhkov V.A., Sotensky R.V., Asadchikov V.E., Shelkov G.A. Research of the monochromaticity of x-ray radiation in a wide range of energies. Industrial laboratory. Diagnostics of materials. 2025;91(11):49-55. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-11-49-55

Views: 57


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)