Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Research of the properties of experimental iron-aluminum alloys

https://doi.org/10.26896/1028-6861-2025-91-11-56-63

Abstract

Intermetallic iron-aluminium alloys are used mainly as wear- and corrosion-resistant coatings intended for use in chemically aggressive environments or at elevated temperatures. At the same time, the alloys are characterized by brittleness at normal temperatures, uneven structure and properties of the contact zone of the intermetallic material with the base. The paper presents the results of a study of the properties of experimental iron-aluminium alloys. The influence of the initial composition of thermite charges on the parameters of the aluminothermic remelting process, the properties of cast samples and their stress-strain state under uniaxial loading was analyzed. The methods of etching microsections of the alloys were determined depending on the aluminum content in them, which is 7.35 – 58.5 % wt. It was found that samples obtained from thermite charges with an active aluminum content of up to 45 % wt. have high resistance to compressive loads. The obtained results can be used to solve problems of processing technogenic formations (scale, non-ferrous metal shavings, etc.) and forming functional surfaces and cast products from them while maintaining operational characteristics under normal conditions.

About the Authors

S. G. Zhilin
Institute of Mechanical Engineering and Metallurgy FEB RAS of Khabarovsk Federal Research Center FEB RAS
Россия

Sergey G. Zhilin

1, ul. Metallurgov, Komsomolsk-na-Amure, Khabarovsk kray, 681005



V. V. Predein
Institute of Mechanical Engineering and Metallurgy FEB RAS of Khabarovsk Federal Research Center FEB RAS
Россия

Valery V. Predein

1, ul. Metallurgov, Komsomolsk-na-Amure, Khabarovsk kray, 681005



V. A. Khudyakova
Institute of Mechanical Engineering and Metallurgy FEB RAS of Khabarovsk Federal Research Center FEB RAS
Россия

Vilena A. Khudyakova 

1, ul. Metallurgov, Komsomolsk-na-Amure, Khabarovsk kray, 681005



N. A. Bogdanova
Institute of Mechanical Engineering and Metallurgy FEB RAS of Khabarovsk Federal Research Center FEB RAS
Россия

Nina A. Bogdanova 

1, ul. Metallurgov, Komsomolsk-na-Amure, Khabarovsk kray, 681005



References

1. Lei X., Wang R., Ding W., et al. Ultrasonic cutting of aerospace difficult-to-cut alloys: current status and prospects / J. Manufact. Proc. 2025. Vol. 142. P. 191 – 221. DOI: 10.1016/j.jmapro.2025.03.103

2. Ragunath S., Radhika N., Saleh B. Advancements and future prospects of additive manufacturing in high-entropy alloy applications / J. Alloys Compounds. 2024. Vol. 997. 174859. DOI: 10.1016/j.jallcom.2024.174859

3. Ikeuba A. I., Njoku C. N., Ekerenam O. O., et al. A review of the electrochemical and galvanic corrosion behavior of important intermetallic compounds in the context of aluminum alloys / RSC Adv. 2024. Vol. 14. No. 43. P. 31921 – 31953. DOI: 10.1039/d4ra06070a

4. Korostelev V. F., Denisov M. S., Bolshakov A. E., Chan V. H. Development of a process for the production of blanks from high-strength aluminum-based alloys / Metally. 2017. No. 5. P. 14 – 19 [in Russian].

5. Alymov M. I., Stolin A. M., Bazhin P. M. Study of the structure and properties of protective coatings obtained by the method of electric spark alloying with SHS electrodes (review) / Industr. Lab. Mater. Diagn. 2022. Vol. 88. No. 2. P. 40 – 48 [in Russian]. DOI: 10.26896/1028-6861-2022-88-2-40-48

6. Shorstov S. Yu., Marakhovsky P. S., Pakhomkin S. I., Razmakhov M. G. Study of thermophysical properties of heat-resistant intermetallic titanium γ-alloy obtained by shaped casting and additive technologies / Industr. Lab. Mater. Diagn. 2022. Vol. 88. No. 9. P. 28 – 34 [in Russian]. DOI: 10.26896/1028-6861-2022-88-9-28-34

7. Sheshukov O. Yu. On the issue of increasing the heat resistance of the material / Izv. Samar. NTs RAN. 2012. Vol. 14. No. 1(2). P. 593 – 596 [in Russian].

8. Lu H., Xin D., Wang C., et al. In-situ synthesis of Fe – Al intermetallic via arc additive manufacturing with cable-type wire / Mater. Lett. 2024. Vol. 357. 135693. DOI: 10.1016/j.matlet.2023.135693

9. Zhilin S. G., Predein V. V., Khudyakova V. A., Bogdanova N. A. Practical aspects of industrial use of high-strength intermetallic compounds based on iron aluminides and promising directions for their production / Metallurg. 2024. No. 12. P. 99 – 106 [in Russian].

10. Zhang Y., Pint B., Garner G., et al. Effect of cycle length on the oxidation performance of iron aluminide coatings / Surf. Coat. Technol. 2004. Vol. 188 – 189. P. 35 – 40. DOI: 10.1016/j.surfcoat.2004.07.090

11. Burkov A. A. Tribological and corrosion characteristics of electric spark Fe – Al aluminide coatings on stainless steel AISI 304 / Treniye Iznos. 2022. Vol. 43. No. 4. P. 361 – 369 [in Russian]. DOI: 10.32864/0202-4977-2022-43-4-361-369

12. Liu Y., Wang M., Cao Y., et al. Revealing the effect of iron content on the microstructure evolution, mechanical properties and corrosion resistance of the A356-T6 aluminum alloys / J. Mater. Res. Technol. 2024. Vol. 33. P. 2263 – 2274. DOI: 10.1016/j.jmrt.2024.09.233

13. Treutler K., Lorenz S., Wesling V. Iron-aluminide alloy derivates — Cladding, microstructure and wear resistance potential for three body abrasion / Wear. 2025. 205981. DOI: 10.1016/j.wear.2025.205981

14. Walker L., Zhang W. An investigation of the effect of steel alloying elements on iron-aluminum intermetallic characteristics for dissimilar resistance spot welding / Mater. Design. 2024. Vol. 248. 113514. DOI: 10.1016/j.matdes.2024.113514

15. Adler L., Fu Z., Koerner C. Electron beam based additive manufacturing of Fe3Al based iron aluminides. Processing window, microstructure and properties / Mater. Sci. Eng.: A. 2020. Vol. 785. 139369. DOI: 10.1016/j.msea.2020.139369

16. Dresvyannikov A. F., Kolpakov M. E., Lapina O. A. Production of iron-aluminum powders from aqueous solutions and their physicochemical properties / Zh. Prikl. Khimii. 2007. Vol. 80. No. 1. P. 9 – 15 [in Russian].

17. Komarov O. N., Zhilin S. G., Predein V. V., Popov A. V. Mechanisms of formation of iron-containing intermetallic compounds obtained by aluminothermy and the influence of special processing methods on their properties / Metallurg. 2020. No. 8. P. 65 – 76 [in Russian].

18. Durairaj A., Kathiresan A., Ananthapadmanaban D. SEM and EDAX Evaluation of Al-Fe Alloy / Int. J. Eng. Adv. Technol. (IJEAT). 2019. Vol. 9. No. 1. 2651. DOI: 10.35940/ijeat.A9881.109119

19. Shiryaeva M. Yu., Silyakov S. L., Belikova A. F., et al. Synthesis of cast iron aluminides from a mixture of Fe2O3 + Al in combustion mode / Neorg. Mater. 2024. Vol. 60. No. 3. P. 316 – 321 [in Russian].

20. Barsukova N. V., Komarov O. N., Zhilin S. G., et al. Controlling the properties of iron-carbon alloys obtained by aluminothermy by varying process factors / Metallurg. 2023. No. 8. P. 94 – 107 [in Russian]. DOI: 10.52351/00260827_2023_08_94

21. Khudyakova V. A., Zhilin S. G., Predein V. V., Komarov O. N. Increasing the wear resistance of a graphite reactor intended for melting thermite charge / Metallurg. 2024. No. 9. P. 70 – 77 [in Russian]. DOI: 10.52351/00260827_2024_9_70

22. Branzei M., Cojocaru M., Coman T., Vascan O. A model of optimization and control the thermite kit for aluminothermic welding / Solid State Phenomena. 2016. Vol. 254. P. 83 – 90. DOI: 10.4028/www.scientific.net/ssp.254.83

23. Gerasimova L. P., Guk Yu. P. Practical metallography: handbook. — Moscow – Vologda: Infra-Inzheneriya, 2022. — 320 p. [in Russian].

24. Atlas of microstructures of ferrous and non-ferrous metals. — Minsk: BGATU, 2012. — 100 p. [in Russian].

25. Zhu D., Pan K., Wu H.-H., et al. Identifying intrinsic factors for ductile-to-brittle transition temperatures in Fe – Al intermetallics via machine learning / J. Mater. Res. Technol. 2023. Vol. 26. P. 8836 – 8845. DOI: 10.1016/j.jmrt.2023.09.135

26. Kupka M., Marut J., Aniołek K., Barylski A. The effect of oxide scale roughness on the plasticity of iron aluminide alloy / Vacuum. 2016. Vol. 132. P. 111 – 118. DOI: 10.1016/j.vacuum.2016.07.034

27. Field K., Gussev M., Yamamoto Y., Snead L. Deformation behavior of laser welds in high temperature oxidation resistant Fe – Cr – Al alloys for fuel cladding applications / J. Nucl. Mater. 2014. Vol. 454. Nos. 1 – 3. P. 352 – 358. DOI: 10.1016/j.jnucmat.2014.08.013

28. Popov A. V., Komarov O. N., Predein V. V., Zhilin S. G. Structure formation on constructional aluminothermic cast elements under conditions of changing process parameters / Proc. of the 13th Int. Conf. on Mechanics, Resource and Diagnostics of Materials and Structures. — AIP Conf. Proc. 2019. Vol. 2176. No. 1. 020006. DOI: 10.1063/1.5135118

29. Chirkin V. S. Thermophysical properties of materials for nuclear engineering: handbook. — Moscow: Atomizdat, 1968. — 484 p. [in Russian].

30. Phase diagrams of binary metallic systems: handbook. — Moscow: Mashinostroenie, 1996. — 992 p. [in Russian].

31. Dresvyannikov A. F., Kolpakov M. E. Synthesis of intermetallic compound Fe3Al / Vestn. Kazan. Tekhnol. Univ. 2010. No. 5. P. 7 – 10 [in Russian].

32. Yang S., Qing X., Zhang J., et al. Role of β(FeAl) nanoparticles in abnormal grain growth in the annealing of cast Cu – Al – Mn – Fe shape memory alloys / Progr. Nat. Sci.: Mater. Int. 2020. Vol. 30. No. 4. P. 510 – 516. DOI: 10.1016/j.pnsc.2020.08.005

33. Whitney M., Jin H., Wells M., Benoit M. Thermal analysis and characterization of cast 6061 aluminum alloy microstructures with elevated iron content / Thermochim. Acta. 2025. Vol. 746. 179951. DOI: 10.1016/j.tca.2025.179951

34. Cubero-Sesin J., Horita Z. Age Hardening in ultrafine-grained Al-2 Pct Fe alloy processed by high-pressure torsion / Metallurg. Mater. Trans. A: Phys. Metallurgy Mater. Sci. 2015. Vol. 46. P. 2614 – 2624. DOI: 10.1007/s11661-015-2876-6

35. Liu D., Lei J., Yan Z., et al. Study on the mechanism of aluminum melt corrosion of Fe-SG series metals / J. Mater. Res. Technol. 2024. Vol. 33. P. 6350 – 6362. DOI: 10.1016/j.jmrt.2024.11.033


Review

For citations:


Zhilin S.G., Predein V.V., Khudyakova V.A., Bogdanova N.A. Research of the properties of experimental iron-aluminum alloys. Industrial laboratory. Diagnostics of materials. 2025;91(11):56-63. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-11-56-63

Views: 210

JATS XML

ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)