Investigation of manganese distribution between MnOx surface segregation and SnO2 crystal structure in SnO2/MnOx nanocomposites by inductively coupled plasma mass spectrometry
https://doi.org/10.26896/1028-6861-2025-91-12-14-19
Abstract
An approach to the determination of manganese separately on the surface and in the volume of SnO2/MnOx nanocomposites is proposed to establish the «synthesis conditions – composition» relationship. The approach includes the determination of the total content of Mn and Sn in solutions of composite and Mn on its surface by the ICP MS, followed by the calculation of the additive content in the volume of the material. Solutions of HCl, H2C2O4, Na4P2O7, and formaldoxime were studied as acid reduction etching reagents for the determination of manganese on the surface. It is shown that when the surface of the samples is treated with a formaldoxime solution at 20°C, manganese dissolves on the surface of the sample, while tin does not pass into the solution. A 4- step temperature program transferring SnO2 synthesized at high temperature to a solution using a mixture of acids in an autoclave with microwave intensification has been developed for subsequent determination of the Mn and Sn content by the ICP MS method. It is shown that the application of internal Mn/Cu and Sn/Rh standards makes it possible to reduce the relative standard deviation of the analysis results (sr) to 0.02. Based on the obtained results of the determination of Mn and Sn on the surface and the total content, the distribution of manganese in SnO2/MnOx composites between the surface and volume is calculated. It is shown that manganese is distributed unevenly between the volume and the surface of the samples. As the annealing time increases, the manganese content on the surface of the composite decreases due to the diffusion of the additive into the SnO2 particle.
About the Authors
R. S. EshmakovRussian Federation
Rodion S. Eshmakov
1, bld. 3, Leninskie gory, Moscow, 119991
1, bld. 3, Leninskie gory, Moscow, 119991
A. V. Sherstobitov
Russian Federation
Andrey V. Sherstobitov
1, bld. 3, Leninskie gory, Moscow, 119991
D. G. Filatova
Russian Federation
Daria G. Filatova
1, bld. 3, Leninskie gory, Moscow, 119991
1, bld. 3, Leninskie gory, Moscow, 119991
M. N. Rumyantseva
Russian Federation
Marina N. Rumyantseva
1, bld. 3, Leninskie gory, Moscow, 119991
1, bld. 3, Leninskie gory, Moscow, 119991
References
1. Krivetskiy V. V., Rumyantseva M. N., Gaskov A. M. Chemical modification of nanocrystalline tin dioxide for selective gas sensors / Russ. Chem. Rev. 2013. Vol. 82. No. 10. P. 917 – 941. DOI: 10.1070/rc2013v082n10abeh004366
2. Bigiani L., Zappa D., Maccato Ch., et al. Hydrogen gas sensing performances of p-type Mn3O4 nanosystems: the role of built-in Mn3O4/Ag and Mn3O4/SnO2 junctions / Nanomaterials. 2020. Vol. 10. No. 3. 511. DOI: 10.3390/nano10030511
3. Yin X.-T., Wu S. S., Dastan D., et al. Sensing selectivity of SnO2- Mn3O4 nanocomposite sensors for the detection of H2 and CO gases / Surf. Interfaces. 2021. Vol. 25. 101190. DOI: 10.1016/j.surfin.2021.101190
4. Sun Q., Xu, X., Peng, H., et al. SnO2-based solid solutions for CH4 deep oxidation: quantifying the lattice capacity of SnO2 using an X-ray diffraction extrapolation method / Chin. J. Catal. 2016. Vol. 37. No. 8. P. 1293 – 1302. DOI: 10.1016/s1872-2067(15)61119-6
5. Bilovol V., Herme C., Jacobo S., et al. Study of magnetic behavior of Fe-doped SnO2 powders prepared by chemical method / Mater. Chem. Phys. 2012. Vol. 135. No. 2. P. 334 – 339. DOI: 10.1016/j.matchemphys.2012.04.055
6. Huang J., Liu Y., Wu Yu., et al. Influence of Mn doping on the sensing properties of SnO2 nanobelt to ethanol / Am. J. Anal. Chem. 2017. Vol. 08. No. 1. P. 60 – 71. DOI: 10.4236/ajac.2017.81005
7. Las W. C., Gouvea D., Sano W. EPR of Mn as densifying agent in SnO2 powders / Solid State Sci. 1999. Vol. 1. No. 6. P. 331 – 337. DOI: 10.1016/s1293-2558(00)80087-4
8. Bhakta N., Chakrabarti P. K. XRD analysis, Raman, AC conductivity and dielectric properties of Co and Mn co-doped SnO2 nanoparticles / Appl. Phys. A. Mater. Sci. Proc. 2019. Vol. 125. 73. DOI: 10.1007/s00339-018-2370-2
9. Filatova D. G., Alov N. V., Sharanov P. Y., Marikutsa A. V. Detecting gold in semiconducting advanced nanomaterials based on tin oxide via total reflection X-ray fluorescence analysis / Moscow Univ. Chem. Bull. (Engl. Transl.). 2015. Vol. 70. No. 2. P. 60 – 62. DOI: 10.3103/s0027131415020066
10. Filatova D. G., Alov N. V., Marikutsa A. V., Seregina I. F. Ruthenium and palladium determination in advanced materials based on tin dioxide by mass spectrometry with inductively coupled plasma and total reflection X-ray fluorescence / Moscow Univ. Chem. Bull. (Engl. Transl.). 2015. Vol. 70. No. 5. P. 234 – 236. DOI: 10.3103/s0027131415050065
11. Vladimirova S. A., Rumyantseva M. N., Filatova D. G., et al. Cobalt location in p-CoOx/n-SnO2 nanocomposites: correlation with gas sensor performances / J. Alloys Compd. 2017. Vol. 721. P. 249 – 260. DOI: 10.1016/j.jallcom.2017.05.332
12. Eshmakov R., Filatova D., Konstantinova E., Rumyantseva M. Effect of manganese distribution on sensor properties of SnO2/MnOx nanocomposites / Nanomaterials. 2023. Vol. 13. No. 9. 1437. DOI: 10.3390/nano13091437
13. Bolea-Fernandez E., Balcaen L., Resano M., Vanhaecke F. Overcoming spectral overlap via inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS). A tutorial review / J. Anal. At. Spectrom. 2017. Vol. 32. No. 9. P. 1660 – 1679. DOI: 10.1039/c7ja00010c
14. Graham S. M., Robért R. V. D. The analysis of high-purity noble metals and their salts by ICP-MS / Talanta. 1994. Vol. 41. No. 8. P. 1369 – 1375. DOI: 10.1016/0039-9140(94)e0027-o
15. Taylor J. R., Wall V. J. Cassiterite solubility, tin speciation, and transport in a magmatic aqueous phase / Econ. Geol. 1993. Vol. 88. No. 2. P. 437 – 460. DOI: 10.2113/gsecongeo.88.2.437
16. Liu W., Sun B., Guan Xi., et al. Influence of pyrophosphate on the generation of soluble Mn (III) from reactions involving Mn oxides and Mn (VII) / Environ. Sci. Technol. 2019. Vol. 53. No. 17. P. 10227 – 10235. DOI: 10.1021/acs.est.9b03456
17. Eshmakov R., Sherstobitov A., Filatova D., et al. SnO2/MnOx composite systems as VOCs sensors: influence of manganese chemical state and distribution on functional performances / Mater. Chem. Phys. 2024. Vol. 328. 129992. DOI: 10.1016/j.matchemphys.2024.129992
18. Li Y., Wang M., Zhao Ya., et al. The molecular structure and spectroscopic properties of formaldoxime (CH2NOH) / Phys. Scr. 2024. Vol. 99. No. 5. 055403. DOI: 10.1088/1402-4896/ad3691
19. Dunstan W. R., Bossi A. L. XXXV. — The preparation and properties of formaldoxime / J. Chem. Soc. Trans. 1898. Vol. 73. No. 0. P. 353 – 361. DOI: 10.1039/ct8987300353
20. Golovanov I. S., Malykhin R. S., Lesnikov V. K., et al. Revealing the structure of transition metal complexes of formaldoxime / Inorg. Chem. 2021. Vol. 60. No. 8. P. 5523 – 5537. DOI: 10.1021/acs.inorgchem.0c03362
21. Fritsch S., Navrotsky A. Thermodynamic properties of manganese oxides / J. Am. Ceram. Soc. 1996. Vol. 79. No. 7. P. 1761 – 1768. DOI: 10.1111/j.1151-2916.1996.tb07993.x
Review
For citations:
Eshmakov R.S., Sherstobitov A.V., Filatova D.G., Rumyantseva M.N. Investigation of manganese distribution between MnOx surface segregation and SnO2 crystal structure in SnO2/MnOx nanocomposites by inductively coupled plasma mass spectrometry. Industrial laboratory. Diagnostics of materials. 2025;91(12):14-19. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-12-14-19






























