Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Identification of volatile impurities and thermal degradation products in sodium polyacrylate by headspace gas chromatography-mass spectrometry

https://doi.org/10.26896/1028-6861-2026-92-1-14-23

Abstract

Volatile organic compounds (VOCs) in the vapor phase above an industrial sample of sodium polyacrylate were investigated under various temperature conditions using gas chromatography-mass spectrometry combined with headspace analysis (HS-GC-MS), with the aim of identifying impurities and thermal degradation products. Conditions ensuring effective chromatographic separation of the degradation products mixture with acceptable resolution of major and minor component peaks were proposed. The sodium polyacrylate samples were thermostated at temperatures simulating operational (30 and 60°C) and extreme technological (190°C) conditions, both with and without air purging. The absence of VOCs in the original industrial sample after thermostating at temperatures up to 60°C was established. At 190°C, nine thermal degradation products and impurities were identified for the first time in the vapor phase, including propylene glycol, 1,4-butanediol, nonanal, dimethyl glutarate, alkyl acetals, bicyclic terpenes (cedrene, longifolene), and 2,6-di-tert-butylquinone (antioxidant degradation product). It was demonstrated that short-term purging of the sample with air at 190°C leads to a significant (by an order of magnitude) reduction in the concentrations of all identified VOCs. Based on an analysis of published toxicological data, it was concluded that the identified VOCs pose a low inhalation risk. The obtained results are important for developing safety measures for the high-temperature processing of sodium polyacrylate and confirm its status as a low-hazard material.

About the Authors

L. A. Fedotova
Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical-Biological Agency
Россия

Lionella A. Fedotova

10 bld. 1, Pogodinskaya ul., Moscow, 119121



T. D. Potapchenko
Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical-Biological Agency
Россия

Timur D. Potapchenko

10 bld. 1, Pogodinskaya ul., Moscow, 119121



Yu. V. Timchenko
Lomonosov Moscow State University, Department of Chemistry
Россия

Yuri V. Timchenko

1 bld. 3, Leninskie Gory, Moscow, 119991



T. A. Bolotnik
Lomonosov Moscow State University, Department of Chemistry
Россия

Timofey A. Bolotnik

1 bld. 3, Leninskie Gory, Moscow, 119991



N. F. Bolotnik
Burnasyan Federal Medical Biophysical Center of the Federal Medical-Biological Agency
Россия

Nadezhda F. Bolotnik

23, ul. Marshala Novikova, Moscow, 123098



I. A. Ananyeva
Lomonosov Moscow State University, Department of Chemistry
Россия

Irina A. Ananyeva

1 bld. 3, Leninskie Gory, Moscow, 119991



I. A. Rodin
Lomonosov Moscow State University, Department of Chemistry
Россия

Igor A. Rodin

1 bld. 3, Leninskie Gory, Moscow, 119991



References

1. Sodium acrylate. https://echa.europa.eu/registration-dossier/-/ registered-dossier/14789/4/9 (accessed 19.07.2025).

2. Swift G. Acrylic (and Methacrylic) Acid Polymers / Encyclopedia of polymer science and technology. — John Wiley & Sons, Inc., 2002. DOI: 10.1002/0471440264.pst009

3. Fiume M. Z. Final report on the safety assessment of acrylates copolymer and 33 related cosmetic ingredient / Int. J. Toxicol. 2002. Vol. 21. No. 3. P. 1 – 50. DOI: 10.1080/10915810290169800

4. Nishida C., Tomonaga T., Izumi H., et al. Inflammogenic effect of polyacrylic acid in rat lung following intratracheal instillation / Part. Fibre Toxicol. 2022. Vol. 19. 8. DOI: 10.1186/s12989-022-00448-z

5. Driscoll K. E., Deyo L. C., Carter J. M., et al. Effects of particle exposure and particle-elicited inflammatory cells on mutation in rat alveolar epithelial cells / Carcinogenesis. 1997. Vol. 18. No. 2. P. 423 – 430. DOI: 10.1093/carcin/18.2.423

6. Kishimoto T., Okamoto K., Koda Sh., et al. Respiratory disease in workers handling cross-linked water-soluble acrylic acid polymer / PLoS One. 2023. Vol. 18. No. 5. e0284837. DOI: 10.1371/journal.pone.0284837

7. Agents Classified by the IARC Monographs / International Agency for Research on Cancer (IARC). Last updated 24.03.2023. Vols. 1 – 133. https://www.certifico.com/component/ attachments/download/34957 (accessed 19.07.2025).

8. Wink O., Schack F. Determination of superabsorbent polyacrylate dust in workplace atmospheres after derivatization with ethanol and using HPLC with pulsed electrochemical detection / Analyst. 2000. Vol. 125. No. 10. P. 1745 – 1750. DOI: 10.1039/b001950j

9. McGrath J. J., Purkiss L., Eberle M., McGrath W. R. 28-day inhalation study of a cross-linked polyacrylate superabsorbent in the hamster / J. Appl. Toxicol. 1994. Vol. 14. No. 4. P. 269 – 273. DOI: 10.1002/jat.2550140405

10. Wang Y., McCaffrey J., Norwood D. L. Recent advances in headspace gas chromatography / J. Liq. Chromatogr. Relat. Technol. 2008. Vol. 31. Nos. 11 – 12. P. 1823 – 1851. DOI: 10.1080/10826070802129092

11. Rial-Otero R., Galesio M., Capelo J.-L., Simal-Gandara J. A review of synthetic polymer characterization by pyrolysis-GC-MS / Chromatographia. 2009. Vol. 70. Nos. 3 – 4. P. 339 – 348. DOI: 10.1365/s10337-009-1254-1

12. Maeno S., Eddy C. L., Rodriguez P. A. Identification of compounds responsible for an off-odor in wet polyacrylate superabsorbent polymers / J. Chromatogr. A. 1999. Vol. 849. No. 1. P. 217 – 224. DOI: 10.1016/s0021-9673(99)00531-2

13. Buzanowski W. C., Cutie S. S., Howell R., et al. Determination of sodium polyacrylate by pyrolysis — gas chromatography / J. Chromatogr. A. 1994. Vol. 677. No. 2. P. 355 – 364. DOI: 10.1016/0021-9673(94)80163-0

14. Zhang S. X., Chai X. S., Jiang R. Accurate determination of residual acrylic acid in superabsorbent polymer of hygiene products by headspace gas chromatography / J. Chromatogr. A. 2017. Vol. 1485. P. 20 – 23. DOI: 10.1016/j.chroma.2017.01.023

15. McCormack P., Lemmo J. S., Macomber M., et al. Measurement of respirable superabsorbent polyacrylate (SAP) dust by ethanol derivatization using gas chromatography-mass spectrometry (GC-MS) detection / J. Occup. Environ. Hyg. 2011. Vol. 8. No. 4. P. 215 – 225. DOI: 10.1080/15459624.2011.561427

16. Shimomura T., Namba T. Preparation and application of high-performance superabsorbent polymers / Buchholz F. L., Peppas N. A. (eds.). Superabsorbent Polymers: Science and Technology, ACS Symposium Series. Vol. 573. P. 112 – 127. — Washington, DC: American Chemical Society, 1994. DOI: 10.1021/bk-1994-0573.ch009

17. Wang T., Kang W., Yang H., et al. Water-soluble grafted sodium polyacrylate with low concentration: synthesis and thermal properties / J. Mol. Liq. 2022. Vol. 345. 117837. DOI: 10.1016/j.molliq.2021.117837

18. Bashir S., Hina M., Iqbal J., et al. Fundamental concepts of hydrogels: synthesis, properties, and their applications / Polymers. 2020. Vol. 12. 2702. DOI: 10.3390/polym12112702

19. Almeida S., Ozkan S., Gonçalves D., et al. A brief evaluation of antioxidants, antistatics, and plasticizers additives from natural sources for polymers formulation / Polymers. 2023. Vol. 15. 6. DOI: 10.3390/polym15010006

20. Murru C., Badía-Laíño R., Díaz-García M. E. Oxidative stability of vegetal oil-based lubricants / ACS Sustainable Chem. Eng. 2021. Vol. 9. No. 4. DOI: 10.1021/acssuschemeng.0c06988

21. Roy P. K., Surekha P., Rajagopal C., et al. Studies on the photo-oxidative degradation of LDPE films in the presence of oxidised polyethylene / Polym. Degrad. Stab. 2007. Vol. 92. No. 6. P. 1151 – 1160. DOI: 10.1016/j.polymdegradstab.2007.01.010

22. Siddiqui T., Khan M. U., Sharma V., Gupta K. Terpenoids in essential oils: chemistry, classification, and potential impact on human health and industry / Phytomed. Plus. 2024. Vol. 4. No. 2. 100549. DOI: 10.1016/j.phyplu.2024.100549

23. Kovářová-Lerchová J., Pilař J., Samay G., Pospíšil J. Antioxidants and stabilizers — LXXII. Products of reaction between oxidized polypropylene and 2,6-ditert-butyl-4-methylphenol / Eur. Polym. J. 1978. Vol. 14. No. 8. P. 601 – 605. DOI: 10.1016/0014-3057(78)90137-4

24. European Chemicals Agency. Substance information. Propane-1,2-diol (InfoCard No. 100.000.307). https://echa.europa. eu/substance-information/-/substanceinfo/100.000.307 (accessed 19.07.2025).

25. European Chemicals Agency. Registration dossier. 1,4-Butanediol (dossier No. 15496). https://echa.europa.eu/registration-dossier/-/registered-dossier/15496 (accessed 19.07.2025).

26. European Chemicals Agency. Registration dossier. Substance information (dossier No. 5471). https://echa.europa.eu/registration-dossier/-/registered-dossier/5471 (accessed 19.07.2025).

27. European Chemicals Agency. Registration dossier. Dimethyl glutarate (dossier No. 5377). https://echa.europa.eu/registration-dossier/-/registered-dossier/5377/ (accessed 19.07.2025).

28. European Chemicals Agency. Substance information. https:// echa.europa.eu/substance-information/-/substance-info/ 100.006.746 (accessed 19.07.2025).

29. European Chemicals Agency. Registration dossier. (dossier No. 19836). https://echa.europa.eu/registration-dossier/-/ registered-dossier/19836 (accessed 19.07.2025).

30. European Chemicals Agency. Substance information. 2,6-Di-tert-butyl-p-benzoquinone (InfoCard No. 100.010.861). https:// echa.europa.eu/substance-information/-/substanceinfo/ 100.010.861 (accessed 19.07.2025).

31. Chemicals Agency. Substance information. (InfoCard No. 100.014.991). https://echa.europa.eu/substance-information/-/substanceinfo/100.014.991 (accessed 19.07.2025).


Review

For citations:


Fedotova L.A., Potapchenko T.D., Timchenko Yu.V., Bolotnik T.A., Bolotnik N.F., Ananyeva I.A., Rodin I.A. Identification of volatile impurities and thermal degradation products in sodium polyacrylate by headspace gas chromatography-mass spectrometry. Industrial laboratory. Diagnostics of materials. 2026;92(1):14-23. (In Russ.) https://doi.org/10.26896/1028-6861-2026-92-1-14-23

Views: 22

JATS XML

ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)