Identification of volatile impurities and thermal degradation products in sodium polyacrylate by headspace gas chromatography-mass spectrometry
https://doi.org/10.26896/1028-6861-2026-92-1-14-23
Abstract
Volatile organic compounds (VOCs) in the vapor phase above an industrial sample of sodium polyacrylate were investigated under various temperature conditions using gas chromatography-mass spectrometry combined with headspace analysis (HS-GC-MS), with the aim of identifying impurities and thermal degradation products. Conditions ensuring effective chromatographic separation of the degradation products mixture with acceptable resolution of major and minor component peaks were proposed. The sodium polyacrylate samples were thermostated at temperatures simulating operational (30 and 60°C) and extreme technological (190°C) conditions, both with and without air purging. The absence of VOCs in the original industrial sample after thermostating at temperatures up to 60°C was established. At 190°C, nine thermal degradation products and impurities were identified for the first time in the vapor phase, including propylene glycol, 1,4-butanediol, nonanal, dimethyl glutarate, alkyl acetals, bicyclic terpenes (cedrene, longifolene), and 2,6-di-tert-butylquinone (antioxidant degradation product). It was demonstrated that short-term purging of the sample with air at 190°C leads to a significant (by an order of magnitude) reduction in the concentrations of all identified VOCs. Based on an analysis of published toxicological data, it was concluded that the identified VOCs pose a low inhalation risk. The obtained results are important for developing safety measures for the high-temperature processing of sodium polyacrylate and confirm its status as a low-hazard material.
About the Authors
L. A. FedotovaРоссия
Lionella A. Fedotova
10 bld. 1, Pogodinskaya ul., Moscow, 119121
T. D. Potapchenko
Россия
Timur D. Potapchenko
10 bld. 1, Pogodinskaya ul., Moscow, 119121
Yu. V. Timchenko
Россия
Yuri V. Timchenko
1 bld. 3, Leninskie Gory, Moscow, 119991
T. A. Bolotnik
Россия
Timofey A. Bolotnik
1 bld. 3, Leninskie Gory, Moscow, 119991
N. F. Bolotnik
Россия
Nadezhda F. Bolotnik
23, ul. Marshala Novikova, Moscow, 123098
I. A. Ananyeva
Россия
Irina A. Ananyeva
1 bld. 3, Leninskie Gory, Moscow, 119991
I. A. Rodin
Россия
Igor A. Rodin
1 bld. 3, Leninskie Gory, Moscow, 119991
References
1. Sodium acrylate. https://echa.europa.eu/registration-dossier/-/ registered-dossier/14789/4/9 (accessed 19.07.2025).
2. Swift G. Acrylic (and Methacrylic) Acid Polymers / Encyclopedia of polymer science and technology. — John Wiley & Sons, Inc., 2002. DOI: 10.1002/0471440264.pst009
3. Fiume M. Z. Final report on the safety assessment of acrylates copolymer and 33 related cosmetic ingredient / Int. J. Toxicol. 2002. Vol. 21. No. 3. P. 1 – 50. DOI: 10.1080/10915810290169800
4. Nishida C., Tomonaga T., Izumi H., et al. Inflammogenic effect of polyacrylic acid in rat lung following intratracheal instillation / Part. Fibre Toxicol. 2022. Vol. 19. 8. DOI: 10.1186/s12989-022-00448-z
5. Driscoll K. E., Deyo L. C., Carter J. M., et al. Effects of particle exposure and particle-elicited inflammatory cells on mutation in rat alveolar epithelial cells / Carcinogenesis. 1997. Vol. 18. No. 2. P. 423 – 430. DOI: 10.1093/carcin/18.2.423
6. Kishimoto T., Okamoto K., Koda Sh., et al. Respiratory disease in workers handling cross-linked water-soluble acrylic acid polymer / PLoS One. 2023. Vol. 18. No. 5. e0284837. DOI: 10.1371/journal.pone.0284837
7. Agents Classified by the IARC Monographs / International Agency for Research on Cancer (IARC). Last updated 24.03.2023. Vols. 1 – 133. https://www.certifico.com/component/ attachments/download/34957 (accessed 19.07.2025).
8. Wink O., Schack F. Determination of superabsorbent polyacrylate dust in workplace atmospheres after derivatization with ethanol and using HPLC with pulsed electrochemical detection / Analyst. 2000. Vol. 125. No. 10. P. 1745 – 1750. DOI: 10.1039/b001950j
9. McGrath J. J., Purkiss L., Eberle M., McGrath W. R. 28-day inhalation study of a cross-linked polyacrylate superabsorbent in the hamster / J. Appl. Toxicol. 1994. Vol. 14. No. 4. P. 269 – 273. DOI: 10.1002/jat.2550140405
10. Wang Y., McCaffrey J., Norwood D. L. Recent advances in headspace gas chromatography / J. Liq. Chromatogr. Relat. Technol. 2008. Vol. 31. Nos. 11 – 12. P. 1823 – 1851. DOI: 10.1080/10826070802129092
11. Rial-Otero R., Galesio M., Capelo J.-L., Simal-Gandara J. A review of synthetic polymer characterization by pyrolysis-GC-MS / Chromatographia. 2009. Vol. 70. Nos. 3 – 4. P. 339 – 348. DOI: 10.1365/s10337-009-1254-1
12. Maeno S., Eddy C. L., Rodriguez P. A. Identification of compounds responsible for an off-odor in wet polyacrylate superabsorbent polymers / J. Chromatogr. A. 1999. Vol. 849. No. 1. P. 217 – 224. DOI: 10.1016/s0021-9673(99)00531-2
13. Buzanowski W. C., Cutie S. S., Howell R., et al. Determination of sodium polyacrylate by pyrolysis — gas chromatography / J. Chromatogr. A. 1994. Vol. 677. No. 2. P. 355 – 364. DOI: 10.1016/0021-9673(94)80163-0
14. Zhang S. X., Chai X. S., Jiang R. Accurate determination of residual acrylic acid in superabsorbent polymer of hygiene products by headspace gas chromatography / J. Chromatogr. A. 2017. Vol. 1485. P. 20 – 23. DOI: 10.1016/j.chroma.2017.01.023
15. McCormack P., Lemmo J. S., Macomber M., et al. Measurement of respirable superabsorbent polyacrylate (SAP) dust by ethanol derivatization using gas chromatography-mass spectrometry (GC-MS) detection / J. Occup. Environ. Hyg. 2011. Vol. 8. No. 4. P. 215 – 225. DOI: 10.1080/15459624.2011.561427
16. Shimomura T., Namba T. Preparation and application of high-performance superabsorbent polymers / Buchholz F. L., Peppas N. A. (eds.). Superabsorbent Polymers: Science and Technology, ACS Symposium Series. Vol. 573. P. 112 – 127. — Washington, DC: American Chemical Society, 1994. DOI: 10.1021/bk-1994-0573.ch009
17. Wang T., Kang W., Yang H., et al. Water-soluble grafted sodium polyacrylate with low concentration: synthesis and thermal properties / J. Mol. Liq. 2022. Vol. 345. 117837. DOI: 10.1016/j.molliq.2021.117837
18. Bashir S., Hina M., Iqbal J., et al. Fundamental concepts of hydrogels: synthesis, properties, and their applications / Polymers. 2020. Vol. 12. 2702. DOI: 10.3390/polym12112702
19. Almeida S., Ozkan S., Gonçalves D., et al. A brief evaluation of antioxidants, antistatics, and plasticizers additives from natural sources for polymers formulation / Polymers. 2023. Vol. 15. 6. DOI: 10.3390/polym15010006
20. Murru C., Badía-Laíño R., Díaz-García M. E. Oxidative stability of vegetal oil-based lubricants / ACS Sustainable Chem. Eng. 2021. Vol. 9. No. 4. DOI: 10.1021/acssuschemeng.0c06988
21. Roy P. K., Surekha P., Rajagopal C., et al. Studies on the photo-oxidative degradation of LDPE films in the presence of oxidised polyethylene / Polym. Degrad. Stab. 2007. Vol. 92. No. 6. P. 1151 – 1160. DOI: 10.1016/j.polymdegradstab.2007.01.010
22. Siddiqui T., Khan M. U., Sharma V., Gupta K. Terpenoids in essential oils: chemistry, classification, and potential impact on human health and industry / Phytomed. Plus. 2024. Vol. 4. No. 2. 100549. DOI: 10.1016/j.phyplu.2024.100549
23. Kovářová-Lerchová J., Pilař J., Samay G., Pospíšil J. Antioxidants and stabilizers — LXXII. Products of reaction between oxidized polypropylene and 2,6-ditert-butyl-4-methylphenol / Eur. Polym. J. 1978. Vol. 14. No. 8. P. 601 – 605. DOI: 10.1016/0014-3057(78)90137-4
24. European Chemicals Agency. Substance information. Propane-1,2-diol (InfoCard No. 100.000.307). https://echa.europa. eu/substance-information/-/substanceinfo/100.000.307 (accessed 19.07.2025).
25. European Chemicals Agency. Registration dossier. 1,4-Butanediol (dossier No. 15496). https://echa.europa.eu/registration-dossier/-/registered-dossier/15496 (accessed 19.07.2025).
26. European Chemicals Agency. Registration dossier. Substance information (dossier No. 5471). https://echa.europa.eu/registration-dossier/-/registered-dossier/5471 (accessed 19.07.2025).
27. European Chemicals Agency. Registration dossier. Dimethyl glutarate (dossier No. 5377). https://echa.europa.eu/registration-dossier/-/registered-dossier/5377/ (accessed 19.07.2025).
28. European Chemicals Agency. Substance information. https:// echa.europa.eu/substance-information/-/substance-info/ 100.006.746 (accessed 19.07.2025).
29. European Chemicals Agency. Registration dossier. (dossier No. 19836). https://echa.europa.eu/registration-dossier/-/ registered-dossier/19836 (accessed 19.07.2025).
30. European Chemicals Agency. Substance information. 2,6-Di-tert-butyl-p-benzoquinone (InfoCard No. 100.010.861). https:// echa.europa.eu/substance-information/-/substanceinfo/ 100.010.861 (accessed 19.07.2025).
31. Chemicals Agency. Substance information. (InfoCard No. 100.014.991). https://echa.europa.eu/substance-information/-/substanceinfo/100.014.991 (accessed 19.07.2025).
Review
For citations:
Fedotova L.A., Potapchenko T.D., Timchenko Yu.V., Bolotnik T.A., Bolotnik N.F., Ananyeva I.A., Rodin I.A. Identification of volatile impurities and thermal degradation products in sodium polyacrylate by headspace gas chromatography-mass spectrometry. Industrial laboratory. Diagnostics of materials. 2026;92(1):14-23. (In Russ.) https://doi.org/10.26896/1028-6861-2026-92-1-14-23
JATS XML






























