Assessment of composite material damage based on a regression analysis model of streaming acoustic emission parameters
https://doi.org/10.26896/1028-6861-2026-92-1-49-59
Abstract
The aim of this study is to develop an acoustic emission (AE) monitoring methodology that is invariant to the mechanical impact influence. To achieve this objective, regression and statistical analysis algorithms were employed to identify nonlinear relationships between the degree of damage in composite specimens (j) and the values of streaming AE parameters. As the most informative AE parameters correlating with the actual condition of the monitored specimens, the quantile values at the p = 0.9 level of the distribution functions of the front energy ([Eφ]p = 0.9) and specific energy ([EN]p = 0.9) of AE pulses were selected. A key stage in the implementation of the proposed methodology involves partitioning the criterion plane ([EN]p = 0.9 – [Eφ]p = 0.9) into three characteristic segments (I, II, III). Based on the values of the streaming parameters and their weighted distribution across segments I, II, and III (WI, WII, WIII), a regression model was synthesized to assess the degree of damage in composite specimens using AE monitoring results. The maximum reduced error of the developed model was γ = 9.8%, while the mean relative error did not exceed 1.1%, regardless of the initial condition of the monitored specimens.
About the Authors
Yu. G. MatvienkoРоссия
Yury G. Matvienko
4, Malyi Kharitonievsky per., Moscow, 101990
D. V. Chernov
Россия
Dmitry V. Chernov
4, Malyi Kharitonievsky per., Moscow
T. D. Balandin
Россия
Timofey D. Balandin
4, Malyi Kharitonievsky per., Moscow, 101990
A. Yu. Marchenkov
Россия
Artem Yu. Marchenkov
14, Krasnokazarmennaya ul., Moscow, 111250
N. V. Turbin
Россия
Nikolay V. Turbin
Moscow Aviation Institute (National Research University)
A. V. Kojevnikov
Россия
Anton V. Kojevnikov
14, Krasnokazarmennaya ul., Moscow, 111250
References
1. Deo R. B., Starnes J. H., Holzwarth R. C. Low-cost composite materials and structures for aircraft applications / Low Cost Composite Structures: Proc. of the RTO AVT Specialists’ Meeting, Loen, Norway, 7 – 11 May, 2001. Published in RTO-MP-069(II). 2003. P. 1 – 11.
2. Gorbunov E. V., Lukasov V. V., Musonov V. M. Use of composites in the production and operation of aircraft / Act. Probl. Aviation Cosmonautics. 2015. Vol. 1. No. 11. P. 692 – 693 [in Russian].
3. Wu Yulun. Application of carbon fiber composite materials in aircraft / Appl. Comput. Eng. 2024. Vol. 61. P. 245 – 248. DOI: 10.54254/2755-2721/61/20240969
4. Parveez B., Kittur M. I., Badruddin I. A., Kamangar S., et al. Scientific advancements in composite materials for aircraft applications: a review / Polymers. 2022. Vol. 14. P. 5007. DOI: 10.3390/polym14225007
5. Ivanov V. I., Barat V. A. Acoustic emission diagnostics. — Moscow: Spektr, 2017. — 368 p. [in Russian].
6. Sazonov A. A., Shelobkov V. I., Ivanov V. I. Study of parameters of acoustic emission transducers taking into account the influence of the acoustic-electronic channel and calibration conditions / Industr. Lab. Mater. Diagn. 2022. Vol. 88. No. 2. P. 30 – 39 [in Russian]. DOI: 10.26896/1028-6861-2022-88-2-30-39
7. Makhutov N. A., Gadenin M. M., Ivanov V. I. Scientific and methodological basis for technical diagnostics of potentially hazardous industrial facilities / Occupat. Safety Industry. 2021. No. 6. P. 7 – 14 [in Russian]. DOI: 10.24000/0409-2961-2021-6-7-14
8. Matvienko Yu. G., Vasiliev I. E., et al. Features of planar location of acoustic emission sources using the Inglada triangulation algorithm / Defektoskopiya. 2024. No. 12. P. 3 – 13 [in Russian]. DOI: 10.31857/s0130308224120011
9. Bryanskiy A. A., Bashkov O. V., Belova I. V., Bashkova T. I. Study of developing damage under bending loading of polymer composite materials and their identification by acoustic emission method / Frontier Mater. Technol. 2022. No. 2. P. 7 – 16 [in Russian].
10. Panasiuk K., Dudzik K., Hajdukiewicz G. Acoustic emission as a method for analyzing changes and detecting damage in composite materials during loading / Arch. Acoustics. 2021. Vol. 46. No. 3. P. 399 – 407. DOI: 10.24425/aoa.2021.138133
11. Saeedifar M., Ahmadi Najafabadi M., Mohammadi K., et al. Acoustic emission-based methodology to evaluate delamination crack growth under quasi-static and fatigue loading conditions / J. Nondestr. Eval. 2018. Vol. 37. No. 1. DOI: 10.1007/s10921-017-0454-0
12. Matvienko Yu. G., Makhutov N. A., Vasiliev I. E., et al. Assessment of residual strength of composite products based on structural-phenomenological damage concept and acoustic emission diagnostics / Industr. Lab. Mater. Diagn. 2022. Vol. 88. No. 1. Part I. P. 69 – 81 [in Russian]. DOI: 10.26896/1028-6861-2022-88-1-i-69-81
13. Matvienko Yu. G., Vasil’ev I. E., Chernov D. V. Damage and failure of unidirectional laminate by acoustic emission combined with video recording / Acta Mech. 2021. Vol. 232. P. 1889 – 1900. DOI: 10.1007/s00707-020-02866-6
14. Stepanova L. N., Chernova V. V., Kabanov S. I. Analysis of fracture processes in carbon fiber reinforced plastic samples using acoustic emission and strain gauging / Defektoskopiya. 2023. No. 7. P. 3 – 13 [in Russian]. DOI: 10.31857/s0130308223070011
15. Almeida Renato S. M., Magalhães Marcelo D., Karim Md Nurul, et al. Identifying damage mechanisms of composites by acoustic emission and supervised machine learning / Mater. Design. 2023. Vol. 227. P. 111745. DOI: 10.1016/j.matdes.2023.111745
16. Mikhalchenkov A. M., Komogortsev V. F., Dyachenko A. V. Testing of the system polymer adhesive composition — metal alloy for adhesive strength / Industr. Lab. Mater. Diagn. 2015. Vol. 81. No. 8. P. 59 – 61 [in Russian].
17. Kalteremidou K., Aggelis D., van Hemelrijck D., Pyl L. Acoustic emission for identification of the dominant stress component in polymer composites at early loads / e-J. Nondestr. Testing. 2023. Vol. 28(1). DOI: 10.58286/27595
18. Nak-Sam Choi, Tae-Won Kim, Kyoung Y. Rhee. Kaiser effects in acoustic emission from composites during thermal cyclic-loading / NDT & E Int. 2005. Vol. 38. No. 4. P. 268 – 274. DOI: 10.1016/j.ndteint.2004.09.005
19. Yutong F., Yao X. A review on manufacturing defects and their detection of fiber reinforced resin matrix composites / Composites. Part C. Open Access. 2022. Vol. 8. No. 12. P. 100276. DOI: 10.1016/j.jcomc.2022.100276
20. Azzouz R., Allaoui S., Moulart R. Composite preforming defects: a review and a classification / Int. J. Mater. Forming. 2021. Vol. 14. No. 6. P. 1259 – 1278. DOI: 10.1007/s12289-021-01643-7
21. Polilov A. N., Arutyunova A. S., Tatus N. A. Effect of stress concentration near grips on tensile strength of composites / Industr. Lab. Mater. Diagn. 2020. Vol. 86. No. 11. P. 48 – 59 [in Russian]. DOI: 10.26896/1028-6861.2020.86.11.48-59
22. Belany P., Hrabovsky P., Sedivy S., et al. A Comparative analysis of polynomial regression and artificial neural networks for prediction of lighting consumption / Buildings. 2024. Vol. 14. P. 1712. DOI: 10.3390/buildings14061712
Review
For citations:
Matvienko Yu.G., Chernov D.V., Balandin T.D., Marchenkov A.Yu., Turbin N.V., Kojevnikov A.V. Assessment of composite material damage based on a regression analysis model of streaming acoustic emission parameters. Industrial laboratory. Diagnostics of materials. 2026;92(1):49-59. (In Russ.) https://doi.org/10.26896/1028-6861-2026-92-1-49-59
JATS XML






























