Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Research of anisotropy of low-cycle fatigue characteristics of 316LSi stainless steel produced by wire-arc additive manufacturing

https://doi.org/10.26896/1028-6861-2026-92-1-60-69

Abstract

When manufacturing parts of complex geometry using additive technologies, anisotropy of mechanical properties occurs in materials. The assessment of the anisotropy of static and cyclic properties is carried out, among other things, using experimental studies on samples cut in different directions from the deposited billet. The purpose of the work is to study the anisotropy of mechanical characteristics under cyclic and static loads of 316LSi stainless steel obtained by wire-arc welding. The tests were carried out on samples cut in three different directions from the deposited billet under static tension. It has been established that the elastic properties of steel are primarily influenced by the direction of sample cutting. The effect of sample orientation on the mechanical behavior of steel under low-cycle fatigue with controlled axial deformation parameters is analyzed. It is shown that the samples cut in the vertical and diagonal directions with respect to the plane of the deposited layers have the highest and lowest cyclic durability with equal values of the amplitude of deformation. The results of comparing experimental low-cycle fatigue curves with curves whose parameters were calculated based on the Basquin – Manson – Coffin equation and data from static tensile tests are presented. The possibility of predicting the characteristics of low-cycle fatigue for different directions of sample cutting is shown. The results obtained can be used to modify the technological parameters of wire-arc surfacing to reduce the effect of anisotropy of the mechanical properties of additive materials.

About the Authors

A. V. Ilinykh
Perm National Research Polytechnic University
Россия

Artem V. Ilinykh

29, Komsomolsky prosp., Perm, 614990



A. M. Pankov
Perm National Research Polytechnic University
Россия

Alexander M. Pankov

29, Komsomolsky prosp., Perm, 614990



A. V. Lykova
Perm National Research Polytechnic University
Россия

Anastasiya V. Lykova

29, Komsomolsky prosp., Perm, 614990



A. G. Aksenov
Perm National Research Polytechnic University
Россия

Alexander G. Aksenov

29, Komsomolsky prosp., Perm, 614990



D. N. Trushnikov
Perm National Research Polytechnic University
Россия

Dmitry N. Trushnikov

29, Komsomolsky prosp., Perm, 614990



References

1. Careri F., Khan R., Todd C., et al. Additive manufacturing of heat exchangers in aerospace applications: a review / Appl. Therm. Eng. 2023. Vol. 235. 121387. DOI: 10.1016/j.applthermaleng.2023.121387

2. Gardner L. Metal additive manufacturing in structural engineering — review, advances, opportunities and outlook / Structures. 2023. Vol. 47. P. 2178 – 2193. DOI: 10.1016/j.istruc.2022.12.039

3. Khan N., Riccio A. A systematic review of design for additive manufacturing of aerospace lattice structures: current trends and future directions / Progr. Aerospace Sci. 2024. Vol. 149. 101021. DOI: 10.1016/j.paerosci.2024.101021

4. Leonteva Yu. O. Comparison of the strength and structural properties of the specimens made of EOS PH1 stainless steel of additive manufacturing and 30KhGSA hardened steel of traditional production / Industr. Lab. Mater. Diagn. 2022. Vol. 88. No. 7. P. 63 – 72 [in Russian]. DOI: 10.26896/1028-6861-2022-88-7-63-72

5. Bekker A. C. M., Verlinden J. C. Life cycle assessment of wire + arc additive manufacturing compared to green sand casting and CNC milling in stainless steel / J. Clean. Prod. 2018. Vol. 177. P. 438 – 447. DOI: 10.1016/j.jclepro.2017.12.148

6. Cunningham C., Wikshåland S., Xu. F., et al. Cost modelling and sensitivity analysis of wire and arc additive manufacturing / Proc. Manufact. 2017. Vol. 11. P. 650 – 657. DOI: 10.1016/j.promfg.2017.07.163

7. Makhutov N. A., Makarenko I. V., Makarenko L. V. Kinetics of the multidirectionality of elastic-plastic fracture with allowance for anisotropy of the material properties / Industr. Lab. Mater. Diagn. 2020. Vol. 86. No. 1. P. 44 – 50 [in Russian]. DOI: 10.26896/1028-6861-2020-86-1-44-50

8. Yurchenko A. V. Formation of the database using the results of mechanical testing of the samples obtained by additive technologies / Industr. Lab. Mater. Diagn. 2020. Vol. 86. No. 10. P. 56 – 65 [in Russian]. DOI: 10.26896/1028-6861-2020-86-10-56-65

9. Yadollahi A., Shamsae N. Additive manufacturing of fatigue resistant materials: challenges and opportunities / Int. J. Fatigue. 2017. Vol. 98. P. 14 – 31. DOI: 10.1016/j.ijfatigue.2017.01.001

10. Karakas Ö., Kardes F., Foti P., et al. An overview of factors affecting high-cycle fatigue of additive manufacturing metals / Fatigue Fract. Eng. Mater. Struct. 2023. Vol. 46. No. 5. P. 1649 – 1668. DOI: 10.1111/ffe.13967

11. Javidrad H., Koc B., Bayraktar H., et al. Fatigue performance of metal additive manufacturing: a comprehensive overview / Virt. Phys. Prototyp. 2024. Vol. 19. No. 1. e2302556. DOI: 10.1080/17452759.2024.2302556

12. Avanzini A. Fatigue behavior of additively manufactured stainless steel 316L / Materials. 2022. Vol. 16(1). No. 65. DOI: 10.3390/ma16010065

13. Solberg K., Guan S., Razavi N., et al. Fatigue of additively manufactured 316L stainless steel: the influence of porosity and surface roughness / Fatigue Fract. Eng. Mater. Struct. 2019. Vol. 42. No. 9. P. 2043 – 2052. DOI: 10.1111/ffe.13077

14. Rivolta B., Gerosa R., Panzeri D. Selective laser melted 316L stainless steel: influence of surface and inner defects on fatigue behavior / Int. J. Fatigue. 2023. Vol. 172. 107664. DOI: 10.1016/j.ijfatigue.2023.107664

15. Kopec M., Gunputh U., Macek W., et al. Orientation effects on the fracture behaviour of additively manufactured stainless steel 316L subjected to high cyclic fatigue / Theor. Appl. Fract. Mech. 2024. Vol. 130. 104287. DOI: 10.1016/j.tafmec.2024.104287

16. Blinn B., Lion P., Jordan O., et al. Process-influenced fatigue behavior of AISI 316L manufactured by powder- and wire-based Laser Direct Energy Deposition / J. Mater. Sci. Eng. A. 2021. Vol. 818. 141383. DOI: 10.1016/j.msea.2021.141383

17. Khodinev I. A., Monin S. A. Anisotropy of low cycle fatigue characteristics of single-crystal heatresistant nickel alloys / Tr. VIAM. 2020. Vol. 10(92). P. 97 – 105 [in Russian]. DOI: 10.18577/2307-6046-2020-0-10-97-105

18. Lomakin E. V., Tretyakov M. P., Ilinykh A. V., et al. Mechanical behavior of X15CrNi12-2 structural steel under biaxial lowcycle fatigue at normal and elevated temperatures / Vestn. PNIPU. 2019. No. 1. P. 77 – 86 [in Russian]. DOI: 10.15593/perm.mech/2019.1.07

19. Ilinykh A. V., Wildeman V. E., Tretyakov M. P. Experimental research of the mechanical behavior of structural alloys under biaxial cyclic loading / Vestn. PNIPU. 2017. Vol. 51. P. 115 – 123 [in Russian].

20. Inozemtsev A. A., Ratchiev A. M., Nikhamkin M. Sh., et al. Low-cycle fatigue and cyclic crack resistance of a nickel alloy under loading characteristic for turbine disks / Tyazh. Mashinostr. 2011. No. 4. P. 30 – 33 [in Russian].

21. Romanov A. N. Problems of materials science in the mechanics of deformation and fracture at the stage of crack formation (Part 1) / Vestn. Nauch.-Tekhn. Razvit. 2013, Vol. 11(75). P. 38 – 49 [in Russian].

22. Makhutov N. A. Deformation criteria of fracture and calculation of structural elements for strength. — Moscow: Mashinostroenie, 1981. — 272 p. [in Russian].

23. Abashev D. R. Low-cycle fatigue of V-notched cylindrical samples of bronze alloy / Vestn. PNIPU. 2022. No. 3. P. 32 – 41 [in Russian]. DOI: 10.15593/perm.mech/2022.3.04

24. Shamsujjoha M., Agnew S., Fitz-Gerald J., et al. High strength and ductility of additively manufactured 316L stainless steel explained / Metall. Mater. Trans. A. 2018. Vol. 49. P. 3011 – 3027. DOI: 10.1007/s11661-018-4607-2

25. Yadollahi A., Shamsaei N., Thompson S., et al. Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel / Mater. Sci. Eng. A. 2015. Vol. 644. P. 171 – 183. DOI: 10.1016/j.msea.2015.07.056

26. Botvina L. S., Beletsky E. N., Demina Yu. A., et al. Fatigue fracture of 316L steel manufactured by selective laser melting method / Industr. Lab. Mater. Diagn. 2024. Vol. 90(7). P. 56 – 67 [in Russian]. DOI: 10.26896/1028-6861-2024-90-7-56-67

27. Beard W., Lancaster R., Barnard N., et al. The influence of surface finish and build orientation on the low cycle fatigue behaviour of laser powder bed fused stainless steel 316L / Mater. Sci. Eng. A. 2023. Vol. 864. 144593. DOI: 10.1016/j.msea.2023.144593

28. Shrestha R., Simsiriwong J., Shamsaei N. Fatigue behavior of additive manufactured 316L stainless steel parts: effects of layer orientation and surface roughness / Addit. Manufact. 2019. Vol. 28. P. 23 – 38. DOI: 1016/j.addma.2019.04.011

29. Olshanskaya T., Trushnikov D., Dushina A., et al. Microstructure and properties of the 308LSi austenitic steel produced by plasma-MIG deposition welding with layer-by-layer peening / Metals. 2022 Vol. 12(1). DOI: 10.3390/met12010082

30. Shchitsyn Y., Kartashev M., Krivonosova E., et al. Formation of structure and properties of two-phase Ti-6Al-4V alloy during cold metal transfer additive deposition with interpass forging / Materials. 2021. Vol. 14. No. 16. 4415. DOI: 10.3390/ma14164415

31. Shchitsyn Y. D., Krivonosova E. A., Neulybin S. D., et al. Characteristics of structure and properties of magnesium alloys during plasma additive deposition / Phys. Mesomech. 2021. Vol. 24. No. 6. P. 716 – 723. DOI: 10.1134/s1029959921060102

32. Bayandin Yu. V., Dudin D. S., Ilyinykh A. V. et al. Strength and ductility characteristics of metal alloys and stainless steels created by wire-arc surfacing in a wide range of strain rates / Vestn. PNIPU. 2023. No. 1. P. 33 – 45 [in Russian]. DOI: 10.15593/perm.mech/2023.1.04

33. Laghi V., Palermo M., Tonelli L., et al. Tensile properties and microstructural features of 304L austenitic stainless steel produced by wire-and-arc additive manufacturing / Int. J. Adv. Manufact. Technol. 2020. Vol. 106. P. 3693 – 3705. DOI: 10.1007/s00170-019-04868-8

34. Krivko A. I., Epishin A. I., Svetlov I. L., et al. Elastic properties of single crystals of nickel alloys / Probl. Prochn. 1988. Vol. 20. No. 2. P. 214 – 223 [in Russian].

35. Xin H., Correia J., Veljkovic M., et al. Probabilistic strain-fatigue life performance based on stochastic analysis of structural and WAAM-stainless steels / Eng. Failure Anal. 2021. Vol. 127. 105495. DOI: 10.1016/j.engfailanal.2021.105495

36. Khodinev I. A., Gorbovets M. A., Monin S. A., et al. The investigation of the low-cycle fatigue characteristics of the heat-resistant wrought alloy VZh175 / Tr. VIAM. 2022. Vol. 1(107). P. 97 – 110 [in Russian]. DOI: 10.18577/2307-6046-2022-0-1-97-110


Review

For citations:


Ilinykh A.V., Pankov A.M., Lykova A.V., Aksenov A.G., Trushnikov D.N. Research of anisotropy of low-cycle fatigue characteristics of 316LSi stainless steel produced by wire-arc additive manufacturing. Industrial laboratory. Diagnostics of materials. 2026;92(1):60-69. (In Russ.) https://doi.org/10.26896/1028-6861-2026-92-1-60-69

Views: 19

JATS XML

ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)