Preview

Industrial laboratory. Diagnostics of materials

Advanced search

SIMULATION OF THE PROPAGATION AND ARREST OF THE BRITTLE FRACTURE IN STEEL PLATES OF WITH INITIAL CRACK USING FINITE ELEMENT METHOD

https://doi.org/10.26896/1028-6861-2018-84-1-I-56-65

Abstract

Conditions of brittle fracture arrest occurring in rolled sheet of low-alloyed steels at a specific temperature are considered. The problem of  revealing correlation between this temperature, thickness of testing  specimen and material properties is analyzed using finite element  method for computer simulation of unstable crack propagation in 3D  setting with specified local criteria of brittle and ductile fracture.

About the Authors

A. B. Ilyin
I. V. Gorynin Central research institute of structural materials “Prometey” of the national research center “Kurchatov institute” (NRC “Kurchatov Institute — GRISM “Prometey”)
Russian Federation


D. M. Artemiev
I. V. Gorynin Central research institute of structural materials “Prometey” of the national research center “Kurchatov institute” (NRC “Kurchatov Institute — GRISM “Prometey”)
Russian Federation


V. Yu. Filin
I. V. Gorynin Central research institute of structural materials “Prometey” of the national research center “Kurchatov institute” (NRC “Kurchatov Institute — GRISM “Prometey”)
Russian Federation


References

1. ASTM E 208-06 (2012). Standard Test Method for Conducting Drop-Weight Test to Determine Nil Ductility Transition Temperature of Ferritic Steels.

2. Russian Maritime Register of Shipping, Rules for the Classification, Construction and Equipment of Mobile Offshore Drilling Units and Fixed Offshore Platforms, 2014.

3. ASTM E 436-03 (2014). Standard Test Method for Drop-Weight Tear Tests of Ferritic Steels.

4. Robertson T. Propagation of brittle fracture in steel / J. Iron Steel Inst. 1953. Vol. 175. P. 361 – 374.

5. Hall W., Kikhara H., Zoot V., Wells A. A. Brittle fracture of welded structures. — Moscow: Mashinostroenie, 1974. — 320 p. [in Russian].

6. Barsom J., Rolfe S. Fracture and Fatigue Control in structures — applications of fracture mechanics. Second Edition. — Prentice-Hall, 1987. — 516 p.

7. Palii O. M. Problems of strength and lifetime assurance of hulls and objects of maritime engineering while using of high-strength materials / Proceedings of Int. Conf. on Shipbuilding, Section C, Acad. A. N. Krylov Central Research Institute. 1994. P.1–12[inRussian].

8. ASTM E 1221-2012. Standard Test Method for Determining Plane-Strain Crack-Arrest Fracture Toughness, KIa, of Ferritic Steels.

9. Larsson S., Carlsson A. Influence of non-singular stress terms and specimen geometry on small-scale yielding / J. Mech. Phys. Solids. 1973. N 21. P. 263 – 277.

10. Du Z., Hancock J. The effect of non-singular stresses on crack-tip constraint / J. Mech. Phys. Solids. 1991. N 39. P. 555 – 567.

11. ASTM E 1820-15a. Standard Test Method for Measurement of Fracture Toughness.

12. Broek D. Elementary engineering fracture mechanics. — Leyden, 1974. — 408 p.

13.


Review

For citations:


Ilyin A.B., Artemiev D.M., Filin V.Yu. SIMULATION OF THE PROPAGATION AND ARREST OF THE BRITTLE FRACTURE IN STEEL PLATES OF WITH INITIAL CRACK USING FINITE ELEMENT METHOD. Industrial laboratory. Diagnostics of materials. 2018;84(1(I)):56-65. (In Russ.) https://doi.org/10.26896/1028-6861-2018-84-1-I-56-65

Views: 614


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)