Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of thermal transformations and reactivity of polyacrylonitrile in heat treatment processes

https://doi.org/10.26896/1028-6861-2025-91-7-37-45

Abstract

To optimize the processes of obtaining graphene nanoplatelets based on polyacrylonitrile (PAN), it is necessary to study the thermal transformations and reactivity of PAN during heat treatment. The paper presents the results of a study of the thermal properties of PAN and its interaction with solvents. Using UV and IR spectroscopy, differential scanning calorimetry, thermogravimetric analysis and molecular modeling, it was found that the nitrile group CN is the key reaction center affecting the PAN structure. Calculations showed a decrease in the total energy of the system during heat treatment from 14.87 to 12.51 J/g. When PAN interacted with dimethylacetamide (DMA) and dimethylformamide (DMF), the total energy calculated per 1 atom was 6.02 and 5.64 J/g. It was also revealed that the temperature of solvent removal from the PAN/DMF film with a PAN content of 0.2 wt.% — 141.56, and the carbonization temperature is 300°C. The maximum reactivity is observed in hydrogen atoms connected to tertiary carbon atoms and located near CN groups. The combination of the applied experimental methods of analysis and molecular modeling allowed us to establish the key patterns of thermal transformations of PAN and its interaction with solvents. The results obtained can be used to improve the methods for obtaining graphene-like materials.

About the Authors

Sergey B. Nechushkin
National University of Science and Technology
Russian Federation

Sergey B. Nechushkin,

4, Leninsky prosp., Moscow, 119991.



Yuri B. Nechushkin
National University of Science and Technology
Russian Federation

Yuri B. Nechushkin,

4, Leninsky prosp., Moscow, 119991.



Mihail A. Sitnov
National University of Science and Technology
Russian Federation

Mihail A. Sitnov,

4, Leninsky prosp., Moscow, 119991.



Vladimir V. Kozlov
National University of Science and Technology
Russian Federation

Vladimir V. Kozlov,

4, Leninsky prosp., Moscow, 119991.



References

1. Lu J., Li W., Kang H., et al. Microstructure and properties of polyacrylonitrile based carbon fibers / Polymer Testing. 2020. Vol. 81. P. 106267. DOI: 10.1016/j.polymertesting.2019.106267

2. Mengmeng Q., Kong H., Xiaoma D., et al. Study on the changes of structures and properties of PAN fibers during the cyclic reaction in supercritical carbon dioxide / Polymers. 2019. Vol. 11. P. 402. DOI: 10.3390/polym11030402

3. Liu C., Luo J., Chang H., et al. Polyacrylonitrile sheath and polyacrylonitrile/lignin core bi-component carbon fibers / Carbon. 2019. Vol. 149. P. 165 – 172. DOI: 10.1016/j.carbon.2019.04.004

4. Peijs T., Kirschbaum R., Lemstra P. A critical review of carbon fiber and related products from an industrial perspective / Advanced Industrial and Engineering Polymer Research. 2022. Vol. 5. Issue 2. P. 90 – 106. DOI: 10.1016/j.carbon.2019.04.004

5. Andrianova N. N., Borisov A. M., Mashkova E. S., et al. Ion-beam modification of the surface of carbon fibers / Poverkhnost’. X-ray, synchrotron and neutron studies. 2023. No. 4. P. 10 – 24 [in Russian]. DOI: 10.31857/s1028096023040027

6. Zhu H., Zhang C., Ma N., et al. Surface wettability modification of amine-functionalized polyacrylonitrile fiber to enhance heterogeneous catalytic performance for aldol reaction in water / Applied Catalysis A: General. 2020. Vol. 608. P. 117842. DOI: 10.1016/j.apcata.2020.117842

7. Zhang X., Kitao T., Piga D., et al. Carbonization of single polyacrylonitrile chains in coordination nanospaces / Chem. Sci. 2020. Vol. 11. P. 10844 – 10849. DOI: 10.1039/d0sc02048f

8. Ibragimov R. G., Nefedyev E. S., Gallyamov R. T. Modern technologies for the production of separators for batteries from polymer materials / Vestn. KTU. 2017. No. 20(18). P. 52 – 64 [in Russian].

9. Giuseppe E., Jean-Baptiste D., Virginie D., et al. Polyacrylonitrile separator for high-performance aluminum batteries with improved interface stability / ACS Applied Materials & Interfaces. 2017. Vol. 9. P. 38381 – 38389. DOI: 10.1021/acsami.7b09378

10. Zhou D., Shanmukaraj D., Tkacheva A., et al. Polymer electrolytes for lithium-based batteries: advances and prospects / Chem. 2019. Vol. 5. P. 2326 – 2352. DOI: 10.1016/j.chempr.2019.05.009

11. Rupali S., Janakiraman S., Khalifa M., et al. A high thermally stable polyacrylonitrile-based gel polymer electrolyte for rechargeable Mg-ion battery / Materials Science in Electronics. 2020. Vol. 31. P. 22912 – 22925. DOI: 10.1007/s10854-020-04818-1

12. Lee J.-E., Chae Y. K., Lee D. J., et al. Microstructural evolution of polyacrylonitrile fibers during industry-mimicking continuous stabilization / Carbon. 2022. Vol. 195. P. 165 – 173. DOI: 10.1016/j.carbon.2022.04.009

13. Elias K., Georgios K., Charitidis C. Applying machine learning to nanoindentation data of (nano-) enhanced composites / Fibers. 2019. Vol. 8. P. 3. DOI: 10.3390/fib8010003

14. Borkar T., Mohseni H., Hwang J., et al. Excellent strength-ductility combination in nickel-graphite nanoplatelet (GNP/Ni) nanocomposites / Journal of Alloys and Compounds. 2015. Vol. 646. P. 135 – 144. DOI: 10.1016/j.jallcom.2015.06.013

15. Umrikhina M. Yu., Shorokhova T. O., Utkin S. V., et al. Study of fire-protective intumescent coatings during their operation by methods of X-ray phase, thermal analysis and IR spectroscopy / Industr. Lab. Mater. Diagn. 2020. Vol. 86. No. 3. P. 25 – 31 [in Russian]. DOI: 10.26896/1028-6861-2020-86-3-25-31

16. Khaskov M. A. Study of open porosity of carbon materials by thermoporometry / Industr. Lab. Mater. Diagn. 2020. Vol. 86. No. 11. P. 28 – 35 [in Russian]. DOI: 10.26896/1028-6861-2020-86-11-28-35

17. Kozlov V. V., Kostishin V. G., Sitnov M. A., Godaev B. S. Study of the properties of nanocomposites based on heat-treated polyacrylonitrile (review) / Industr. Lab. Mater. Diagn. 2022. Vol. 88. No. 8. P. 35 – 46 [in Russian]. DOI: 10.26896/1028-6861-2022-88-8-35-46

18. Abd-Elghany M., Klapötke T. A review on differential scanning calorimetry technique and its importance in the field of energetic materials / Physical Sciences Reviews. 2018. Vol. 3. P. 20170103. DOI: 10.1515/psr-2017-0103

19. Chem3D v17.0. User Guide. — Columbia University Libraries, 2017. — 335 p.

20. Suk-Hyun Y., Seung-Chan L., Ho-Young J., Song-Bae K. Characterization of ibuprofen removal by calcined spherical hydrochar through adsorption experiments, molecular modeling, and artificial neural network predictions / Chemosphere. 2023. Vol. 311. P. 1 – 13. DOI: 10.1016/j.chemosphere.2022.137074

21. Zhang L., Yue G., Lu Y., Tang J. BRCA1 as a target for attenuating paclitaxel resistance by Halofuginone treatment in basal-like breast cancer / Journal of Functional Foods. 2024. Vol. 118. P. 106245. DOI: 10.1016/j.jff.2024.106245

22. Wang S., Zhao X., Chang H., et al. A new avibactam Gemini quaternary ammonium salt: synthesis, self-assembly, vibrational spectra, crystal structures and DFT calculations / Journal of Molecular Structure. 2023. Vol. 1293. P. 136214. DOI: 10.1016/j.molstruc.2023.136214

23. Wang Z., Liu D., Ma L., et al. Genome-wide analysis of gustatory receptor genes and identification of the fructose gustatory receptor in Arma chinensis / Heliyon. 2024. Vol. 2024. P. 30795. DOI: 10.1016/j.heliyon.2024.e30795

24. Bao Y., Wang M., Li J., et al. A starch-based 3D printed intelligent colorimetric film co-loaded natural pigments for visualizing food freshness: Effect of nozzle size on gel structure formation / Food Hydrocolloids. 2024. Vol. 155. P. 110218. DOI: 10.1016/j.foodhyd.2024.110218

25. Junias J., Clement J., Rahul M., Arockiaraj M. Two-dimensional phthalocyanine frameworks: topological descriptors, predictive models for physical properties and comparative analysis of entropies with different computational methods / Computational Materials Science. 2024. Vol. 235. P. 112844. DOI: 10.1016/j.commatsci.2024.112844

26. Khedraoui M., Nour H., Yamari I., et al. Design of a new potent Alzheimer’s disease inhibitor based on QSAR, molecular docking and molecular dynamics investigations / Chemical Physics Impact. 2023. Vol. 7. P. 100361. DOI: 10.1016/j.chphi.2023.100361

27. Ihn S.-G., Jeong D., Kwon E., et al. Dipole moment- and molecular orbital-engineered phosphine oxide-free host materials for efficient and stable blue thermally activated delayed fluorescence / Advanced Science. 2021. Vol. 9. P. 2102141. DOI: 10.1002/advs.202102141

28. Ruihao D., Jianglu W., Ting Y., Weiyu C. Formation and evolution of sp2 hybrid conjugate structure of polyacrylonitrile precursor during stabilization / Materials. 2021. Vol. 15. P. 30. DOI: 10.3390/ma15010030

29. Vijayaraghavan V. R., Raghavan K. V. Spectroscopic investigations of polyacrylonitrile thermal degradation / Journal of Polymer Science. 1998. Vol. 36. P. 2503 – 2512.

30. Baker K., Zhitomirsky I. A versatile strategy for the fabrication of poly(ethyl methacrylate) composites / Composites Science. 2022. Vol. 6. P. 40. DOI: 10.3390/jcs6020040

31. Alshuiael S. M. Multivariate analysis for FTIR in understanding treatment of used cooking oil using activated carbon prepared from olive stone / Public Library of Science. 2020. Vol. 15. P. 232997. DOI: 10.1371/journal.pone.0232997

32. Acharya M., Mishra S., Sahoo R., et al. Infrared spectroscopy for analysis of Co-processed ibuprofen and magnesium trisilicate at milling and freeze drying / Acta Chim. Slov. 2017. Vol. 64. P. 45 – 54. DOI: 10.17344/acsi.2016.2772

33. Jin X., Feng C., Creighton C., Hameed N. On the structural evolution of textile grade polyacrylonitrile fibers during stabilization and carbonization: towards the manufacture of low-cost carbon fiber / Polymer Degradation and Stability. 2021. Vol. 186. P. 109536. DOI: 10.1016/j.polymdegradstab.2021.109536

34. Lee J., Jin J.-U., Park S., et al. Melt processable polyacrylonitrile copolymer precursors for carbon fibers: rheological, thermal and mechanical properties / Industrial and Engineering Chemistry. 2018. Vol. 71. P. 112 – 118. DOI: 10.1016/j.jiec.2018.11.012

35. Valle M., Martin L., Maestro A., et al. Chiral bifunctional thioureas and squaramides grafted into old polymers of intrinsic microporosity for novel applications / Polymers. 2018. Vol. 11. P. 13. DOI: 10.3390/polym11010013

36. Moskowitz J., Jacobs W., Tucker A., et al. Thermo-oxidative stabilization of polyacrylonitrile-based copolymers with guanidinium itaconate / Polymer Degradation and Stability. 2020. Vol. 178. P. 109198. DOI: 10.1016/j.polymdegradstab.2020.109198

37. Meinl J., Schönfeld K., Kirsten M. Optimization of the temperature program to scale up the stabilization of polyacrylonitrile fibers / Composites Part A: Applied Science and Manufacturing. 2017. Vol. 96. P. 37 – 45. DOI: 10.1016/j.compositesa.2017.02.010

38. Luo J., Chang H., Wang P.-H., et al. Cellulose nanocrystals effect on the stabilization of polyacrylonitrile composite films / Carbon. 2018. Vol. 134. P. 92 – 102.

39. Furushima Y., Kumazawa R., Yamaguchi Y., et al. Precursory reaction of thermal cyclization for polyacrylonitrile / Polymer. 2021. Vol. 226. P. 123780. DOI: 10.1016/j.polymer.2021.123780

40. Szepcsik B., Pukánszky B. Separation and kinetic analysis of the thermo-oxidative reactions of polyacrylonitrile upon heat treatment / Thermochimica Acta. 2018. Vol. 133. P. 1371 – 1378.


Review

For citations:


Nechushkin S.B., Nechushkin Yu.B., Sitnov M.A., Kozlov V.V. Study of thermal transformations and reactivity of polyacrylonitrile in heat treatment processes. Industrial laboratory. Diagnostics of materials. 2025;91(7):37-45. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-7-37-45

Views: 21


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)