Determination of impurities in technical refined silicon by atomic emission spectrometry with spillage-injection of a powder sample into an arc discharge with an argon stream
https://doi.org/10.26896/1028-6861-2025-91-10-14-22
Abstract
The analytical characteristics of the atomic emission spectrometry (AES) technique with the powder sample introduction into a horizontal arc discharge (AD) by the spillage-injection method using an argon medium to determine various elements in silicon, including boron and phosphorus. It is shown that the use of argon medium in the upgraded electric arc setup of «Grand-Potok» spectrometer with the introduction of powder samples by the spillage-injection technique allowed the development of a new express technique for the industrial silicon analysis which has better metrological characteristics in the determination of boron and phosphorus than previously used methods of X-ray fluorescence analysis (XRF), atomic emission spectrometry with inductively coupled plasma (ICP AES) and arc discharge (AES-AD) with vaporation of the sample from the channel. The proposed technique provides to determine the impurities of Fe, Al, Ca, Cu, Ti, Mn, Ni and V: its metrological characteristics are comparable to those of XFF and ICP AES methods for Fe, Al, Ca, and Cu and are worse for Ti, Mn, Ni, and V determination. The technique is characterized by expressiveness (the time of a single measurement is about 20 sec), the absence of complex sample preparation (it is enough to grind the sample to a particle size of 200 mesh), representativeness (1200 mg per sample) and low detection limits of B and P — 2 × 10–5 and 1 × 10–4 %, respectively.
About the Authors
A. A. DzyubaRussian Federation
Anatoly A. Dzyuba.
1, prosp. Akademika Koptyuga, Novosibirsk, 630090.
S. V. Dodonov
Russian Federation
Stanislav V. Dodonov.
1, prosp. Akademika Koptyuga, Novosibirsk, 630090.
E. E. Zolotarev
Russian Federation
Egor E. Zolotarev.
1, Yuzhnaya ul., Shelekhov, Irkutsk Region, 666034.
V. A. Labusov
Russian Federation
Vladimir A. Labusov.
1, prosp. Akademika Koptyuga, Novosibirsk, 630090.
References
1. Barron A. R. Semiconductor grade silicon / Chemistry of the main group elements. — Rice University, 2014. P. 7.10.1 – 7.10.6.
2. Vasil’eva I. E., Shabanova E. V., Sokol’nikova Yu. V., et al. A set of methods for the determination of impurities in multi-silicon and its products / Analit. Kontrol’. 2001. Vol. 5. No. 1. P. 24 – 34 [in Russian].
3. Carpio R. A., Mariscal R., Welch J. Determination of boron and phosphorus in borophosphosilicate thin films on silicon substrates by capillary electrophoresis / Anal. Chem. 1992. Vol. 64. No. 18. P. 2123 – 2129. DOI: 1021/ac00042a017
4. Shelpakova I. R., Shaverina A. V. The determination of impurities in silicon (review) / Analit. Kontrol’. 2011. No. 2. P. 141 – 150 [in Russian].
5. Diebold A. Metrology roadmap: a supplement to the national technology roadmap for semiconductors. — Austin, Texas: Sematech, 1995. — 40 p.
6. Revenko A. G., Pashkova G. V. X-ray fluorescence spectrometry: current status and prospects of development / J. Anal. Chem. 2023. Vol. 78. No. 11. P. 1452 – 1458 [in Russian]. DOI: 10.1134/s1061934823110072
7. Baktri S., Anas M., Wakita M. H., Chalik C. A., et al. Geochemical characterization of silica sand in the sidenreng rappang area based on X-ray diffraction analysis and X-ray fluorescence analysis / J. Geol. Explor. 2023. Vol. 2. No. 1. P. 1 – 7. DOI: 10.58227/jge.v2i1.36
8. Strunina N. N., Baisova B. T. Study of the matrix influence on the intensity of element lines in atomic emission spectral analysis / Khim. Fiz. Mezoskopiya. 2018. Vol. 20. No. 1. P. 130 – 136 [in Russian].
9. Douvris C., Vaughan T., Bussan D., et al. How ICP-OES changed the face of trace element analysis: review of the global application landscape / Sci. Total Environ. 2023. Vol. 905. 167242. DOI: 10.1016/j.scitotenv.2023.167242
10. Prasad D. S., Sanjana B., Sai Kiran D., et al. A unique sustainable chemical method for the recovery of pure silicon from waste crystalline silicon solar panels / Sustainable Mater. Technol. 2023. Vol. 37. e00671. DOI: 10.1016/j.susmat.2023.e00671
11. Dzyuba A. A., Labusov V. A., Vasil’eva I. E., et al. Analytical capabilities of «Grand Potok» spectral system for the scintillation determination of gold and silver in geological samples / Analit. Kontrol’. 2017. Vol. 21. No. 1. P. 6 – 15 [in Russian]. DOI: 10.15826/analitika.2017.21.1.001
12. Dodonov S. V., Dzyuba A. A., Labusov V. A. Studying the effect of the argon flow introduced into the arc discharge in the atomic-emission spectrometry of powdered samples using the spillage-injection method / Industr. Lab. Mater. Diagn. 2023. Vol. 89. No. 12. P. 13 – 21 [in Russian]. DOI: 10.26896/1028-6861-2023-89-12-13-21
13. Labusov V. A., Dzyuba A. A., Garanin V. G., et al. Optical spectrometers Grand: a new tool for measuring mass fractions of analytes / Analit. Kontrol’. 2024. Vol. 28. No. 3. P. 259 – 269 [in Russian]. DOI: 10.15826/analitika.2024.28.3.004
14. Dzyuba A. A., Labusov V. A., Babin S. A. Testing of MAES analyzers with BLPP-2000 and BLPP-4000 photodetector linear arrays in a «Grand-Potok» spectral system / Analit. Kontrol’. 2019. Vol. 23. No 1. P. 35 – 42 [in Russian]. DOI: 10.15826/analitika.2019.23.1.005
15. Babin S. A., Selyunin D. O., Labusov V. A. High-speed multichannel MAÉS analyzers based on BLPP-2000 and BLPP-4000 photodectector arrays / Industr. Lab. Mater. Diagn. 2019. Vol. 85. No. 1. Part II. P. 96 – 102 [in Russian]. DOI: 10.26896/1028-6861-2019-85-1-ii-96-102
16. Prokopchuk S. I. Scintillation spectral analysis in geology. — Irkutsk: Inst. Geokhimii SO RAN, 1994. — 64 p. [in Russian].
17. Guselnikov A. A., Rusanov A. K. Spectral analysis with powder injection into a three-phase arc plasma / Zh. Prikl. Spektrosk. 1971. Vol. 15. No. 1. P. 11 – 18 [in Russian].
18. Rusanov A. K. Fundamentals of quantitative spectral analysis of ores and minerals. — Moscow: Nedra, 1978. — 400 p. [in Russian].
Review
For citations:
Dzyuba A.A., Dodonov S.V., Zolotarev E.E., Labusov V.A. Determination of impurities in technical refined silicon by atomic emission spectrometry with spillage-injection of a powder sample into an arc discharge with an argon stream. Industrial laboratory. Diagnostics of materials. 2025;91(10):14-22. (In Russ.) https://doi.org/10.26896/1028-6861-2025-91-10-14-22






























