Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Vol 86, No 7 (2020)
View or download the full issue PDF (Russian)

EDITORIAL COLUMN

SUBSTANCES ANALYSIS

7-11 687
Abstract

The significance of the problem of determining the concentration of beryllium in solutions is substantiated. A method of APESI mass-spectrometry (atmospheric pressure electrospray ionization with in-source atomization) is compared with a number of other common procedures used for solving the aforementioned problem and a number of advantages of APESI mass spectrometry are highlighted. The possibility of measuring the beryllium concentration in various chemical forms using APESI mass-spectrometry is studied. We used sulfate, nitric acid and chloride salts of beryllium. The measurements were carried out on a specialized small-sized mass spectrometer MI-20 «LowMass» developed at MS-Bio Company, Russia. A schematic diagram of the device designed to determine the concentration of beryllium in solutions is presented and described. A technique of solution preparation and measurement procedure are proposed. Presented ass spectra obtained on the samples containing beryllium and lithium isotopes were used as an internal standard. It is shown that beryllium can be detected from the salts of chloride and nitric acids with close relative sensitivity coefficients. The obtained detection limit for beryllium chloride in those measurements was ~1 – 2 × 10–8 M. At the same time, the analytical signal of beryllium cannot be detected during electrospray of the solution of beryllium sulfate under any experimental conditions. It has been suggested that this effect may be attributed to the features of dissolution of beryllium sulfate, in particular, to hydrolysis and formation of complex compounds with sulfate, including complex polymer and colloidal forms.

12-19 611
Abstract

A viral development of statistical data processing, computing capabilities, chromatography-mass spectrometry, and omics technologies (technologies based on the achievements of genomics, transcriptomics, proteomics, metabolomics) in recent decades has not led to formation of a unified protocol for untargeted profiling. Systematic errors reduce the reproducibility and reliability of the obtained results, and at the same time hinder consolidation and analysis of data gained in large-scale multi-day experiments. We propose an algorithm for conducting omics profiling to identify potential markers in the samples of complex composition and present the case study of urine samples obtained from different clinical groups of patients. Profiling was carried out by the method of liquid chromatography mass spectrometry. The markers were selected using methods of multivariate analysis including machine learning and feature selection. Testing of the approach was performed using an independent dataset by clustering and projection on principal components.

20-26 784
Abstract

A comparative analysis of current methods for determination of aromatic hydrocarbons in the components of diesel fuel revealed that IR spectrometry appeared to be the most optimal method for operational control of the content of aromatic hydrocarbons in medium distillate products of the hydrogenation process. We developed a procedure for quantitative determination of aromatic hydrocarbons in the components of diesel fuel using IR Fourier spectroscopy. The analysis of absorption spectra of the components of diesel fuel revealed that the optical density of the stretching vibration band of the aromatic ring is proportional to the quantitative content of aromatic hydrocarbons (AHC) in the components of diesel fuel. One of the components for compounding diesel fuels obtained at JSC «ANKhK» during hydrotreating of raw materials under severe conditions (30 MPa, 380 – 400°C) was selected as an object of the study. Conditions of IR spectrometric analysis (wave number — 1606.5 cm–1, cell material — NaCl, absorbing layer thickness — 0.1 cm) were specified after recording of the absorption spectrum of the purified component. To construct a calibration dependence the total AHC content and corresponding optical density of the sample were determined by the methods of HPLC and IR spectrometry, respectively. The samples of hydrogenate under study (taken at different timepoints) contained 1 – 8% AHC on average depending on the parameters of a continuously operating unit. The characteristics of the proposed procedure were evaluated in accordance with the requirements of RMG 76–2014. The correctness of the obtained results of AHC determination was confirmed in comparison with the data of independent (tetrimetric) analysis. The use of the developed method in analysis of other components of diesel fuel, requires additional studies to determine the interfering substances and assess their impact on the accuracy of AHC determination.

TESTING OF STRUCTURE AND PARAMETERS. PHYSICAL METHODS OF TESTING AND QUALITY CONTROL

27-32 525
Abstract

Silica optical fibers (OF) having a core diameter of 400 – 800 μm made of biocompatible materials are widely used in laser medicine. The results of studying the optical parameters of novel silica-polymeric optical fiber with a reflective thermoplastic copolymer coating (tetrafluoroethylene – ethylene) and the influence of coating conditions on these optical parameters are presented. Coatings from polymer melt were applied to the silica fiber surface by orifice drawing. The numerical aperture of the drawn OF was measured by distribution of the laser radiation emerging from OF in the far field. The optical losses were determined by the distribution of the radiation scattered by the reflective coating along the OF length. The scattering parameters of the laser radiation transmitted through OF were estimated by the intensity and indicatrix of scattering. We studied OF samples up to 50 m in length with a silica core of about 400 μm in diameter and reflective coating with a thickness of 70 – 90 μm, the reflective coating also performed a protective function. The quality of applied coating and optical parameters of the OF samples depended on the speed of fiber drawing (coating speed) Vd. A smooth coating was obtained at Vd ≤ 2 m/min. When Vd > 2 m/min the coating became rough, turning into the so-called «shark skin» at Vd = 6 m/min. Observed scattering of radiation passing through the studied OF samples was attributed to the polymer structure which contained both crystalline and amorphous phases with different values of the refractive index. The smallest scattering was observed in a smooth-coated OF. The total optical loss at a wavelength λ = 532 nm amounted to 300 – 720 dB/km (a nominal numerical aperture was 0.44). Short (1.5 – 3 m) OF samples were shown to provide a transmission of 80 – 93% of the input power.

33-38 630
Abstract

When reconstructing products obtained using additive technologies based on layer-by-layer melting of metal powder by concentrated energy flows, it is advisable to use methods that minimize melting of the initial powder and reduce structural heterogeneity of the material. Cold gas-dynamic spraying with laser-induced intensification of the process (CGDSL) is one of them. The multilayer coatings obtained by the CGDSL method have a homogeneous metal structure though a significant surface roughness attributed to the particle size of the original powder is observed. The goal of the study is to develop a new method of post-processing of multilayer coatings obtained by CGDSL which can provide a hardened layer on their surface. A hardened layer is formed through introduction of boron carbide powder particles into the laser-molten region formed on the surface of the coating based on 316L stainless steel. An acoustic wave triggered by a «microexplosion» induced by a laser pulse above the surface pushes carbide particles in different directions. Some of them are embedded into the melt pool on the surface of the coating. Thus, the laser microdetonation cartooning of the surface of the CGDSL coating is implemeted. Study of the hardened layer revealed a high content of B, C, Cr, Fe, and Ni. Moreover, it is shown that solid carbides of rhombic form are formed in the hardened layer. Chemical and elemental analyzes showed that diamond-shaped carbides — carbides of the type (Fe, Cr)xBy — contain a high concentration of Cr, Fe and a relatively small percentage of C. Most likely formation of diamond-shaped carbides occurs due to interaction of chromium which is a part of the initial hardened coating with boron that released from the surface of BC particles under laser impact. The developed method provides hardening of the surface layer of the coating previously obtained by CGDSL by embedding the BC powder particles into the surface. The technology of hardening CGDSL coatings can be implemented using other powder materials.

39-44 712
Abstract

Thickness is one of the key indicators characterizing the quality and functional properties of coatings. Various indirect methods (electromagnetic, radiation, optical) most often used in practice to measure thickness are based on the functional dependence of a particular physical parameter of the system «base – coating» on the coating thickness. The sensitivity of these procedures to the certain properties of coatings imposes the main restriction to the accuracy of measurements. Therefore, the development and implementation of the approaches based on direct measurements of geometric parameters of the coating appears expedient. These methods often belong to the class of «destructive» and, in addition to measuring instruments, require the use of special equipment. To ensure the uniformity of measurements in the laboratory or technological control, these methods are isolated as a separate procedure (method) and must undergo metrological certification in accordance with GOST R 8.563–2009. We present implementation, metrological certification and practical application of the method for measuring thickness of coatings by crater-grinding method. The principles of technical implementation of test equipment, measurement procedure and calculation formulas are described. The results of evaluating the accuracy indicators of the proposed procedure by calculation and experimental methods are presented. In both cases, the relative error did not exceed 6%. The applicability of the developed technique is shown for a wide range of coating materials (from soft metals to superhard ceramics) of different thickness (with from units to hundreds of micrometers). Apart from the goals of process control and outgoing inspection, the method can be recommended as a reference measurement procedure for calibration of measures and adjusting samples for various types of thickness gauges.

MECHANICAL TESTING METHODS

45-54 477
Abstract

The probabilistic aspects of multiscale modeling of the fracture of heterogeneous structures are considered. An approach combining homogenization methods with phenomenological and numerical models of fracture mechanics is proposed to solve the problems of assessing the probabilities of destruction of structurally heterogeneous materials. A model of a generalized heterogeneous structure consisting of heterogeneous materials and regions of different scales containing cracks and crack-like defects is formulated. Linking of scales is carried out using kinematic conditions and multiscale principle of virtual forces. The probability of destruction is formulated as the conditional probability of successive nested fracture events of different scales. Cracks and crack-like defects are considered the main sources of fracture. The distribution of defects is represented in the form of Poisson ensembles. Critical stresses at the tops of cracks are described by the Weibull model. Analytical expressions for the fracture probabilities of multiscale heterogeneous structures with multilevel limit states are obtained. An approach based on a modified Monte Carlo method of statistical modeling is proposed to assess the fracture probabilities taking into account the real morphology of heterogeneous structures. A feature of the proposed method is the use of a three-level fracture scheme with numerical solution of the problems at the micro, meso and macro scales. The main variables are generalized forces of the crack propagation and crack growth resistance. Crack sizes are considered generalized coordinates. To reduce the dimensionality, the problem of fracture mechanics is reformulated into the problem of stability of a heterogeneous structure under load with variations of generalized coordinates and analysis of the virtual work of generalized forces. Expressions for estimating the fracture probabilities using a modified Monte Carlo method for multiscale heterogeneous structures are obtained. The prospects of using the developed approaches to assess the fracture probabilities and address the problems of risk analysis of heterogeneous structures are shown.

55-58 641
Abstract

The Bauschinger effect is one of the fundamental properties of most metal alloys exposed to plastic deformation under non-monotonic loading. Development of the methods for quantifying this effect is one the important issues of the theory of plasticity. Calculation of the parameter characterizing the aforementioned effect is required for determination of the stress state in plastically deformable blanks upon pressure metal treatment. The value of the parameter (determined in standard tensile tests followed by subsequent compression of samples) is defined by the ratio of the conditional yield strength of the sample under compression to the value of the preliminary tensile stress. A series of cylindrical samples (~10 pcs.) is usually taken for tensile-compression tests. According to the traditional procedure, long-size standard specimens are pre-stretched to various degrees of plastic deformation. After that short specimens are cut out from those specimens for compression tests to determine the conditional compressive yield strength with a tolerance of 0.2% for plastic deformation. Such a procedure is rather time consuming and expensive. We propose and develop a new single-model method for estimating the Bauschinger effect which consists in testing of a single long-size specimen for tension followed by compression of the specimen in a special device providing deformation of a previously stretched specimen without flexure under conditions of a linear stress state. The device was designed, manufactured and underwent the appropriate tests. The device contains supporting elements in the form of conical-shaped sectors that prevent flexure of a long cylindrical specimen upon compression, a ratio of the working part length to diameter ranges from 5 to 10. The results of experimental determination of the parameter β characterizing the indicated effect are presented. The results of comparing the values of the parameter β determined by the developed and traditional methods revealed the possibility of determining the parameter β using the proposed method. To reduce the complexity of performing tests related to determination of the parameter β we approximated it in the form of an exponent as a function of the magnitude of plastic deformation and determine the only one value of β0 under plastic deformations exceeding 0.05. In this regard, β0 can be considered a new characteristic of the material. The calculated data are in good agreement with the experimental results. The values of β0 are determined for a number of studied steel grades.

59-64 485
Abstract

The goal of the study is analysis of the features of fatigue cyclic fracture of steels. An installation has been designed to induce fatigue cracks and to study the kinetics of fatigue crack development. Crack growth is recorded by the method of potential difference. The data on the crack growth kinetics were processed on a computer using LGraph2 programs and Excel spreadsheets. When studying the kinetics of the fatigue crack development, the electrodes were soldered to the edges of the initial notch of the sample and time dependence of the potential difference was recorded on a computer during crack growth. To interpret the experimental data, a calibration chart in the coordinates «potential difference (U) – the crack length (Lcr)» constructed on the basis of the millivoltmeter readings was used, with due regard for the size of the sample section, current flow and length of the fatigue crack. Cyclic loading of the sample resulted in a stepwise character of the crack growth: first occurred zone of plastic deformation of the metal is then followed by accumulation of stresses of a certain size, their relaxation in the form of a crack and sudden crack growth. An abrupt crack growth is clearly visible on a graph of the fatigue crack growth rate obtained upon computer processing of experimental data. Using a graphical editor KOMPAS, a graph was constructed which characterized the growth of the fatigue crack against the number of cycles of fatigue tests for bending. The experimental setup provides the possibility of fatigue crack formation for impact tests, determination of the work of crack propagation, as well as studying of the kinetics of crack development and computer processing of experimental data.

MATHEMATICAL METHODS OF INVESTIGATION

65-71 450
Abstract

A method has been developed for converting a discrete sequence of extrema into a continuous process. The relevancy of the problem is attributed to the necessity of an approximate estimation of spectral density in in testing materials and structures under random (irregular) loading. A great bulk of available experimental data thus can be used in development and validation of calculation methods for assessing durability in the multi-cycle region. Postulating the continuity of random stress processes and their first derivative we propose to connect piecewise the available starting points (namely, the extrema of the random process) with half-cosine functions under the condition of compatibility at the points of extrema. A distinctive feature of the method is the provision of 100% coincidence of the values and sequences of extrema in the initial discrete and simulated continuous processes. The issue of choosing the magnitude of half-periods for these half-cosine functions is addressed on the basis of information obtained from the analysis of real stress records in the form of a regression equation linking half-periods and half-ranges for some realizations of the random process for transport vehicles. The regression dependences of the half-periods and semi-ranges of bending stresses (part of a railway train) and torsion (torsion shaft of a tracked vehicle) are shown as an example. An analysis of the correlation of two random variables (half-periods and half-ranges) according to empirical data has shown that the correlation exists and is significant for the observed number of points thus providing the basis for using the regression formula for an approximate choice of the frequency composition of the process. Moreover, the lower restrictions are imposed on the number of points (at least 5) in the half-period. Since the extrema of the initial and simulated processes coincide in accordance with the principle of the proposed simulation, the distribution of the amplitudes of complete cycles, as well as the results of schematization by other known methods are identical, therefore, the estimate of the durability by hypotheses based on a linear one is also identical. The validation of the method consists in consideration of the chain: 1) the initial continuous process; 2) the discrete process of extrema; 3) simulated continuous process according to the proposed method. Auxiliary distributions, such as distributions of maximum, minimum and average cycle values also coincide in accordance with the principle of modeling. The method is proposed to be used in analysis of the comparability of two competing approaches in assessing the loading in the problems of assessing durability, namely: those that use cycle-counting methods and methods based on the spectral density of processes. Since the spectral densities of the processes can differ due to an approximate choice of the frequencies on the basis of a regression formula, methods on their base can give estimates of the durability that differ from those obtained by schematization methods. To study this phenomenon, further computational experiments are required. The developed method can be very useful for the experiment design.

72-80 385
Abstract

The accuracy of interval estimation systems is usually measured using interval lengths for given covering probabilities. The confidence intervals are the intervals of a fixed width if the length of the interval is determined, i.e., not random, and tends to zero for a given covering probability. We consider two important directions of statistical analysis -sequential interval estimation with confidence intervals of fixed width and sequential point estimation with asymptotically minimum risk. Two statistical models are used to describe the basis problems of sequential interval estimation by confidence intervals of a fixed width and point estimation. A review of data on nonparametric sequential estimation is carried out and new original results obtained by the authors are presented. Sequential analysis is characterized by the fact that the moment of termination of observations (stopping time) is random and is determined depending on the values of the observed data and on the adopted measure of optimality of the constructed statistical estimate. Therefore, to solve the asymptotic problems of sequential estimation, the methods of summation of random variables are used. To prove the asymptotic consistency of the confidence intervals of a fixed width, we used a method based on application of limit theorems for randomly stopped random processes. General conditions of the consistency and efficiency of sequential interval estimation of a wide class of functionals of an unknown distribution function are obtained and verified by sequential interval estimation of an unknown probability density of asymptotically uncorrelated and linear processes. Conditions of the regularity are specified that provide the property of being an estimate with an asymptotically minimum risk for a wide class of estimates and loss functions. Those conditions are verified by sequential point estimation of an unknown distribution function.



ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)